Hydrogeological Assessment and Sewage System Design– 4488 County Road 29, Douro-Dummer, Ontario

March 8, 2024

CAMBIUM

Prepared for: Kawartha Utility Services Ltd

Cambium Reference: 18842-001

CAMBIUM INC.

866.217.7900

cambium-inc.com

Table of Contents

1.0	Introduction	1
1.1	Site Description	1
2.0	Methodology	2
2.1	Background Information Review	2
2.2	Subsurface Investigation	2
2.2.1	Physical Laboratory Testing	3
2.3	In-Situ Infiltration Testing	3
2.4	Test Well Installation	3
2.5	TW1 Pumping Test	4
2.5.1	Monitoring Wells	4
2.6	Groundwater Quality	5
3.0	Geological and Hydrogeological Setting	6
3.1	Topography and Drainage	6
3.2	Physiographic Region	6
3.3	Overburden Geology	6
3.4	Bedrock Geology	6
3.5	MECP Water Well Records	7
3.6	Vulnerable and Regulated Areas	8
3.7	Hydrogeological Conditions	8
3.7.1	Shallow Overburden	8
3.7.2	Bedrock	8
4.0	Results of Field Investigations and Testing	
4.1	Subsurface Investigation	10
4.1.1	Grain Size Analysis	11
4.2	In-Situ Infiltration Testing	11
5.0	Water Balance Assessment	13

5.1	Water Surplus	14
5.2	Infiltration Rates	15
5.2.1	Pre-Development Water Balance	15
5.2.2	Post-Development Water Balance	16
5.2.3	Water Balance Comparison	16
5.3	Discussions on LID Measures	17
6.0	Water Supply Assessment	
6.1	Hydraulic Pumping Test – TW1	19
6.2	Water Quality Results	20
7.0	Sewage System Design	22
7.1	Design Sewage Flows	22
7.2	Proposed Sewage System Design	22
7.2.1	Primary Treatment – Septic Tank	22
7.2.2	Pump Chamber	23
7.2.3	Distribution Box	23
7.2.4	Subsurface Disposal	24
7.3	Permit Application	24
8.0	General Design Requirements	
9.0	Electrical Requirements	
10.0	Conclusions and Recommendations	27
11.0	Closing	29
12.0	References	30
13.0	Standard Limitations	

List of Tables

Table 1	Summary of Surrounding Water Well Record Information	7
Table 2	Grain Size Analysis Results	11
Table 3	Infiltration Rates - Guelph Permeameter Method	12
Table 4	Pre- and Post-Development Site Statistics	14
Table 5	Pre-Development Water Balance	16
Table 6	Post-Development Water Balance	16
Table 7	Water Balance Comparison	
Table 8	Requirement of Infiltration from Roof Run-off	
Table 9	TW1 Pumping Test Rate Adjustments	
Table 10	Summary of Select Water Quality Parameter	21
Table 11	Design Sewage Flow	22

List of Appended Figures

Figure 1	Regional Sit	la Location	Man
rigule i	Regional Si		iviap

- Figure 2 Site Plan
- Figure 3 MECP Well Records Within 500 m
- Figure 4 Post-Development Plan
- Figure 5 TW1 Pumping Test Hydrograph
- Figure 6 Proposed Sewage System Site Plan
- Figure 7 Filter Bed Layout
- Figure 8 Filter Bed Profile
- Figure 9 Details and Notes

List of Appendices

- Appendix A Proposed Development Plan and Land Information
- Appendix B Test Pit Logs
- Appendix C Grain Size Analysis
- Appendix D Infiltration Testing Calculations
- Appendix E Test Well Record

- Appendix F Water Quality Results
- Appendix G MECP Well Records
- Appendix H Water Balance Calculations
- Appendix I Sewage System Permit Application

1.0 Introduction

Cambium Inc. (Cambium) was retained by Kawartha Utility Services Ltd., (Client), to complete a hydrogeological assessment and sewage system design for the property located at 4488 County Road 29, Township of Douro-Dummer, Ontario (the Site).

The property is approximately 5.32-hectares (ha) and exists as vacant land. It is understood that the proposed development will consist of a commercial maintenance shop building to be privately serviced for water and wastewater.

1.1 Site Description

The total area of the property is approximately 5.32 ha and currently zoned primarily as Special District 101 Holding Zone (S.D. 101-H), with the southernmost tip of Site zoned as Rural Use (RU) as outlined in the Douro-Dummer Zoning Map (Appendix A). The Site is bordered to the southeast and south by Rural Use (RU) zoning, and to the northeast by Special District 203 Zone (S.D. 203) designated for existing commercial storage uses. The Site is bordered to the west by County Road 29 and to the east by County Road 28.

The regional location of the Site is outlined on Figure 1, the property and surrounding areas are outlined on Figure 2 and the draft Concept Plan is included in Appendix A.

2.0 Methodology

This section outlines the methodology followed to complete the hydrogeological assessment.

2.1 Background Information Review

A review of available relevant background information was undertaken for this study, which included the following resources:

- Physiography of Southern Ontario (Chapman, L.J. and D.F. Putnam, 1984);
- Paleozoic Geology of Southern Ontario, Miscellaneous Release Data 219, scale 1:50,000. (OGS, 2007)
- Surficial geology of Southern Ontario, Miscellaneous Release Data 128 revised, scale 1:50,000 (OGS, 2010)
- MECP Water Well Information System (WWIS) website (MECP, 2024a)
- MECP Source Protection Information Atlas (SPIA) (MECP, 2024b)

2.2 Subsurface Investigation

A soil investigation using a backhoe was conducted at the Site on October 25, 2023, to determine the composition and stratigraphy of the existing soils, the depth to the water table, depth to bedrock contact, and the percolation time of the native soils. The excavation areas were chosen in select areas to determine the thickness and composition of the native soil in the vicinity of the proposed sewage system. Kawartha Utility Services provided the excavation equipment and operator. A total of six test pits were excavated to 3.0 m in depth or refusal on bedrock. A total of three hand auger holes were advanced to depths between 0.5 m and 1.0 m on-site for the infiltration tests. Soil samples were collected and logged for soil type encountered. Soil logging included descriptions of moisture content, presence of odour, and signs of impacts such as staining or mottling, in accordance with standard geotechnical soil descriptions and nomenclature. Soil samples were recovered and retained in moisture-

preserving labelled containers for subsequent review and possible laboratory testing. All test pits were checked for groundwater and caving prior to backfilling.

Test pit logs are included in Appendix B and discussed in Section 4.1.

2.2.1 Physical Laboratory Testing

To support the on-site sewage system design, physical laboratory testing, including sieve and hydrometer analyses, was completed on two soil samples to confirm textural classification. Results are presented in Appendix C and discussed in Section 4.1.1.

2.3 In-Situ Infiltration Testing

In-situ soil infiltration tests were conducted at the Site on October 25, 2023, by Cambium personnel using a Guelph Permeameter (GP). The Guelph Permeameter is used to accurately measure in-situ hydraulic conductivity or the field saturated hydraulic conductivity (Kfs) of the native soils.

The GP tests were completed at select locations, refer to Figure 2, at depths ranging from 0.5 m to 1.0 m in native soils below the topsoil layer. A total of three GP tests were conducted.

The field results of the in-situ infiltration testing were processed using SOILMOISTURE ® excel based calculation models which yield the saturated hydraulic conductivity of the soil (in m/s). The saturated hydraulic conductivity results are then cross-referenced against established relationships between hydraulic conductivity (m/s) and infiltration rate (mm/hr), as outlined in the *Supplementary Guidelines to the Ontario Building Code: SG-6 Percolation Time and Soil Descriptions* (OMMAH, 1997).

Results are presented in Appendix D and discussed in Section 4.2.

2.4 Test Well Installation

The supply well for the proposed development was installed by Burgess Well Drilling on November 11, 2023. The location of the supply well (herein referred to as TW1) is illustrated in Figure 2. A well record for the TW1 is included in Appendix E.

Test well TW1 was assigned the well ID # A366720. Soils were described as brown, packed, sand and stones to 1.8 metres below ground surface (mbgs), underlain by grey shale bedrock to 2.4 mbgs, underlain by grey fractured limestone bedrock to completion depth of 36.6 mbgs. Water was encountered at 12.2 mbgs. The well has a 0.15 m diameter steel casing installed from approximately 1 metre above ground surface (mags) to 6.1 mbgs and open hole there after. The static water level after well drilling was 11.3 metres below top of the well pipe (mbtop). The recommended pumping rate, based on a 1-hour pumping test conducted by the driller, was 11.4 L/min (3 US gallons per minute (gpm)).

2.5 TW1 Pumping Test

A pumping test was completed by Cambium staff on November 16, 2023. Prior to testing, Solinst[™] pressure transducer Leveloggers were installed in TW1 to electronically measure water levels before, during, and after the test.

A separate logger was used to record atmospheric pressure to compensate for barometric pressure changes. Water levels were also measured manually throughout testing to verify pressure transducer data.

The objective of the constant rate testing was to confirm sustainable well yield and assess aquifer properties. The discharge rate was pre-selected to be 7.5 L/min (2 USGPM) and pumped until the sewage system daily flow volume estimate of 3,975 L/day as described in Section 7.0 was achieved. Rate adjustment and increased pumping duration was required (see Section 6.1). Within the last hour of the pumping test, a water quality sample was collected and submitted for laboratory analysis.

Results of the pumping test are discussed further in Section 6.0.

2.5.1 Monitoring Wells

A well survey was completed of several adjacent properties listed below on October 25, 2023.

- 4512 County Road 29
- 4463 County Road 29

- 1595 Stenner Road
- 1598 Stenner Road

Contact was not made with any of owners of these properties. A letter was left at the properties requesting participation in the monitoring program for the pumping test. There was no response to the letters to date.

There were no monitoring wells identified on-site during the Site reconnaissance visit that could be used for monitoring during the pumping test.

2.6 Groundwater Quality

A groundwater sample was collected from TW1 at 16:30 pm on November 16, 2023, near the end of the pumping test, and submitted to SGS Canada Inc. in Lakefield (SGS) for analysis. The groundwater sample was analyzed for general organic and inorganic chemistry and compared against the parameters outlined in the Ontario Drinking Water Quality Standards (ODWQS; MOE (2006)). The Certificates of Analysis are attached in Appendix F. It is noted that well TW1 was chlorinated by Cambium on the morning of the pump test.

3.0 Geological and Hydrogeological Setting

3.1 Topography and Drainage

A topographic map was prepared using the Ministry of Natural Resources database (MNRF, 2024) which can be found in Appendix A. Topography at the Site is generally flat, having a topographic high at the south and east portions of Site with gradual slopes down to the northwest toward the County Road 29. Drainage at the Site is inferred to follow Site topography northwest off-site.

3.2 Physiographic Region

The Site is located in the physiographic region known as the Peterborough Drumlin Field. The drumlin field is comprised of approximately 300 drumlins as well as many drumlinoid hills and surface flutings of the till sheet. The drumlins are composed of highly calcareous till and it is reported that the till in the Peterborough area has minimal rubble but some occurrences of boulders of Precambrian origin (Chapman, L.J. and D.F. Putnam, 1984). The region is characterized by limestone of the Lindsay and Verulam Formations; in the vicinity of the Site, the physiography is noted as Verulam (OGS, 2007).

3.3 Overburden Geology

According to Miscellaneous Release – Data 128 from the Ontario Geological Survey (OGS, 2010) the Site is characterized as stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain.

3.4 Bedrock Geology

The bedrock of the area consists of Middle Ordovician rocks of the Simcoe Group (OGS, 2007). The Site is composed of rocks from the Verulam Formation, which is described as a sequence of interbedded limestone and shale. The carbonate lithology of this formation varies from very fine-crystalline limestone, virtually fossil-free, to coarse-crystalline bioclastic limestones.

3.5 MECP Water Well Records

Cambium accessed the Ministry of the Environment Conservation and Parks (MECP) Water Well Information System (WWIS) to review water well records within 500 m of the Site.

There were 50 water well records found within approximately 500 m of the Site (Figure 3; Appendix G). Of the well records, 1 well was installed in overburden to a depth of 11.6 metres below ground surface (mbgs); 42 well records that were drilled into bedrock to a geometric mean depth of 14.3 mbgs. The geometric mean depth of the overburden-bedrock contact was encountered at 3.8 mbgs. The wells were installed between the years 1953 and 2015. A total of 45 well records were for water supply wells, 1 well record was for a monitoring/test well, 2 well records was for an abandoned well, 1 well record was for a decommissioned dug well, and 1 well record with no well use information. A summary of the depths, static water levels, and pumping rates for the bedrock wells and overburden wells are shown in Table 1.

Well Type		Depth (mbgs)	Water Found at (mbgs)	Static Water Level (mbgs)	Recommended Pumping Rate (L/min)
Deducati	Minimum	4.0	4.0	0	5
Bedrock	Maximum	36.6	36.6	12	45
000m - 42	Geomean	14.3	11.5	4	17
Overburden Count = 1	Details	11.6	11.6	8	36

 Table 1
 Summary of Surrounding Water Well Record Information

A summary of the information outlined in the well records is provided below:

- Overburden was reported as primarily as clay. Some well records also recorded isolated gravel and sand horizons.
- Bedrock was described as grey limestone, and in some instances, brown shale rock.

3.6 Vulnerable and Regulated Areas

As per the MECP Source Water Protection Information Atlas (SPIA) the majority of Site is located with a highly vulnerable aquifer (HVA) with a vulnerability score of 6 (MECP, 2024b).

In general, a HVA will consist of granular materials (e.g., sand and/or gravel) or fractured rock that has a high permeability and is near ground surface. The land use practices at the proposed development Site are not expected to cause any contamination to the water resources. The HVA is not expected to be influenced by the proposed development.

Best Management Practices (BMPs) should be implemented so as to avoid or minimize the overland flow of any contaminants from the Site to the natural environment.

As per MNRF Natural Heritage System database the Site does not have any Areas of Environmental Significance or Areas of Natural and Scientific Interest (ANSI). No significant wetlands or woodlands are situated on the Site (Appendix A).

3.7 Hydrogeological Conditions

3.7.1 Shallow Overburden

Shallow surficial soils at the Site generally consist of sandy silt or silt which overlies predominantly sandy silt to sand sediments. Groundwater was not encountered in the shallow overburden sediments in the subsurface investigation. The overburden wells from the MECP WWIS data indicated static water levels ranging from in one well at a depth of 11.6 mbgs.

Shallow overburden monitoring wells were not installed at Site to confirm groundwater levels and groundwater flow direction. However, the shallow groundwater is inferred to flow northwest following topography toward Katchewanooka Lake.

3.7.2 Bedrock

There are multiple bedrock fractures in the area of the Site which are drawn upon for local groundwater supplies. The WWIS data indicates that the depth to these fractures is highly variable and range from 4.0 mbgs to 36.6 mbgs. The average static water level of the bedrock

aquifer is 2.8 mbgs and ranges from 0.3 mbgs to 18.3 mbgs. The supply well installed on-site (TW1) is in the fractured limestone bedrock aquifer. The direction of groundwater flow within the bedrock aquifer was not confirmed as part of this assessment.

4.0 Results of Field Investigations and Testing

This section outlines the results of the field investigations and testing included in the hydrogeological assessment.

4.1 Subsurface Investigation

Cambium completed a test pit investigation at the Site on October 25, 2023, to assess the subsurface conditions at the Site. A total of six test pits were advanced into the overburden, designated as TP101-23 through TP106-23. Test pits were all terminated on bedrock with depths ranging from 1.22 mbgs to 2.51 mbgs. Test pit locations are included on Figure 2. Test pit logs are included in Appendix B.

A summary of general lithological details are presented below:

Topsoil

A surficial layer of topsoil was encountered in all test pits with thicknesses ranging from ground surface to approximately 0.30 mbgs.

Sandy Silt

Underlying the topsoil is a surficial layer of loose sandy silt, with varying mixtures of clay and gravel mixtures that extended to depths ranging from 0.38 mbgs to 0.86 mbgs. The material was noted to be red/brown in colour.

Sand

Underlying the topsoil in TP106-23 is a layer of loose sand, trace silt, that extended to a depth of 0.56 mbgs. The material was noted to be yellow brown in colour and dry.

Sandy Silty Gravel

Beneath the fine sandy silt soils in TP101-23, TP102-23, TP103-23, TP104-23, and TP106-23 is loose sandy silty gravel, with varying amounts of clay and cobble were encountered. The gravelly sand was noted to be brown or brown/grey in colour. This layer extended to the depths ranging from 1.02 mbgs to 2.51 mbgs.

Bedrock

Bedrock was encountered in every test pit during the subsurface investigation. Bedrock near overburden bedrock interaction was described as shale. In test pit TP105-23 shale extended from 0.38 to 1.22 mbgs and in test pit TP106-23 shale was encountered from 1.02 mbgs to 1.47 mbgs. Test pits were all terminated on bedrock at depths ranging between 1.22 mbgs and 2.51 mbgs.

4.1.1 Grain Size Analysis

Laboratory particle size distribution analyses were completed on two samples of the native soil taken from the test pits and depths shown in Table 2. The grain size distribution results are provided in Appendix C.

Test Pit	Depth (mbgs)	Soil	% Gravel	% Sand	% Silt	% Clay	T-Times (min/cm)
TP102-23 GS2	0.64-2.51	Sandy, Silty Gravel, trace Clay	39	30	25	6	20
TP104-23 GS1	0.30-0.86	Sandy Silt, some Clay, trace Gravel	1	31	54	14	30

Table 2 Grain Size Analysis Results

The soil percolation rates ranged from 20 min/cm to 30 min/cm. The geometric mean of the percolation rate was estimated at 25 min/cm. These results indicate a moderate to low infiltration capacity of the native soils, depending on whether the coarse-grained or fine-grained unit is encountered.

4.2 In-Situ Infiltration Testing

The details of the test results are presented in Table 3 below and the calculation and additional details are provided in Appendix D.

Test	Test Depth (mbgs)	Tested Soil Type	Head (mm)	Average Field Saturated Hydraulic Conductivity, Kfs (m/s)	Percolation Time (min/cm)	Infiltration Rate (mm/hour)
GP101-23	0.65	Fine sand, trace	40	1.53*10 ⁻⁶	12	52
		silt, trace gravel	80			
GP102-23	0.67	One will be a set of	30	2 93*10-6	10	61
01 102-23	0.07	Gravelly sand	60	2.33 10	10	01
GP103-23 0.46		Fine sand, trace	30	3 13*10 ⁻⁷	18	34
000 20	0.10	silt	60		.0	

Table 3 Infiltration Rates - Guelph Permeameter Method

As shown above, the infiltration rates ranged between 34 mm/hour and 61 mm/hour. The measured infiltration rates are expected for the soils tested at these locations and depths.

5.0 Water Balance Assessment

Following the Thornthwaite and Mather methodology (1957), the water balance is an accounting of water in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can run off towards lakes and streams (R), infiltrate to the groundwater table (I), or evaporate from ground or evapotranspiration by vegetation (ET). When long-term average values of P, R, I, and ET are used, there is minimal or no net change to groundwater storage (Δ S).

The annual water budget can be expressed as:

 $P = ET + R + I + \Delta S$

Where:

P = Precipitation (mm/year)

ET = Evapotranspiration (mm/year)

R = Run-off (mm/year)

I = Infiltration (mm/year)

 ΔS = Change in groundwater storage (taken as zero) (mm/year)

It is noted that the water balance described herein does not account for catchment areas that extend off-site. The calculations compare the pre- and post-development water balance changes within the Site boundaries.

The property is currently undeveloped grassy fields. It is understood that the proposed development will include a gravel parking lot and a maintenance building. Based on the available design information, the development area at the Site can be generally categorized into two (2) types as paved area (includes gravel area), and landscaped area. The post-development plan of the proposed development is shown in Figure 4. A summary of the surface areas of the development is listed in Table 4:

Type of Land Coverage	Pre-Development Areas (m²)	Post Development Areas (m²)
Paved Area	0	4,971
Building Roof Area	0	1,652
Landscape/Vegetated Area	53,230	46,607
Total (m²)	53,230	53,230

Table 4 Pre- and Post-Development Site Statistics

Supporting information referenced herein (including detailed water balance calculations) is attached in Appendix H.

5.1 Water Surplus

Water surplus is calculated by determining the difference between precipitation and evapotranspiration (changes in soil water storage was assumed to be negligible over the course of a year). The volume of water surplus is further sub-divided into portions that infiltrate the on-site soils and that are directed off-site as runoff.

The climatic data including monthly average temperature and precipitation were obtained from Environment Canada, for Peterborough Trent U weather station (Climate Identifier: 6166455) located about 10 km distance from the Site. Data is available for a period of 30 years, from 1981 to 2010. Accordingly, the average annual evapotranspiration was estimated to be about 523 mm/annum using the USGS Thornthwaite Monthly Water Balance methodology (Appendix H), and the average annual precipitation was recorded to be 882 mm/annum. The water surplus of the Site was calculated to be 359 mm/yr.

Evapotranspiration does not occur from structures, paved areas, or gravel surfaces. It was assumed that 10% of precipitation falling on these surfaces is lost directly to evaporation. The remaining depth (i.e., 90% of precipitation) was considered surplus and converted to infiltration and/or runoff.

5.2 Infiltration Rates

The volume of surplus water that infiltrates through pervious surfaces on-site was determined by applying an infiltration factor to the surplus depth. The surplus water that does not infiltrate into pervious surfaces will leave the Site as surface water runoff. The infiltration factor varies from 0 to 1 and is estimated based on topography, soils, and vegetation cover as per the *Stormwater Management Planning and Design Manual* (Ministry of the Environment, 2003).

The rate of infiltration at a Site is expected to vary, based on a number of factors to be considered in any infiltration model. To partition the available water surpluses into infiltration and surface run-off, the Ministry of Environment, Conservation and Parks (MECP) infiltration factor was used. The MECP Storm Water Management Planning and Design Manual (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used, and a corresponding run-off component was calculated for the soil moisture storage conditions.

The Site is exhibits rolling to hilly topography. Based on the results of the test pit investigation, the subsurface conditions at the Site consist of predominantly sandy silt soils, and the vegetation cover was determined to be cultivated. Therefore, an infiltration factor of 0.55 was calculated for the site using the MECP method.

The calculation of infiltration and runoff in the stages of pre-development and postdevelopment is provided in Appendix H, and are presented in the tables below.

5.2.1 Pre-Development Water Balance

The water balance for the existing conditions of the Site is summarized in Table 5. The predevelopment infiltration rate was calculated to be 10,510 m³/yr and the runoff rate was 8,599 m³/yr.

Land Use		Area (m²)	Precipitation (m³)	Evapotranspiration (m³)	Infiltration (m³)	Run-off (m³)
Impervious	Paved Area	-	-	-	-	-
Areas	Roof Area	-	-	-	-	-
Pervious Areas	Landscape Area	53,230	46,949	27,839	10,510	8,599
	Totals	53,230	46,949	27,839	10,510	8,599

Table 5 Pre-Development Water Balance

Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.

5.2.2 Post-Development Water Balance

The post-development water balance is summarized in Table 6. The post-development infiltration rate was calculated to be 9,203 m³/yr and the runoff rate was 12,787 m³/yr.

Land Use		Area (m²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-off (m ³)
Impervious	Paved Area	4,971	4,384	438	-	3,946
Areas	Roof Area	1,652	1,457	146	-	1,311
Pervious Areas	Landscape Area	46,607	41,107	24,375	9,203	7,529
	Totals	53,230	46,949	24,960	9,203	12,787

Table 6 Post-Development Water Balance

Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.

5.2.3 Water Balance Comparison

The water balances of the pre-development and post-development scenarios are summarized below in Table 7.

 Table 7
 Water Balance Comparison

	Precipitation (m³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-off (m ³)
Pre- Development	46,949	27,839	10,510	8,599
Post- Development	46,949	24,960	9,203	12,787
Change in Volume	-	-2,880	-1,308	4,187
Change in %	-	-10	-12	49

According to the above table, there is an infiltration deficit of about 1,308 m³/year compared to the pre-development infiltration. The runoff rate upon development of the Site will increase by 4,187 m³/year.

Table 8 Requirement of Infiltration from Roof Run-off

Volume of Pre-Development Infiltration (m ³ /annum)	10,510
Volume of Post-Development Infiltration (m ³ /annum)	9,203
Deficit from Pre to Post Development Infiltration (m ³ /annum)	1,308
% of Roof Runoff required to match the pre-development infiltration	100

Based on the above calculations, a summary of the water balance could be provided as follows:

- There is a net increase in run-off at the Site of about 4,187m³/annum, from 8,599 m³/annum to 12,787 m³/annum. This increase is a result of the development of the Site with more impervious areas such as roof and paved areas and decrease in pervious landscape areas.
- Post-development landscape area was decreased by about 6,281 m², when compared to the pre-development landscape, resulting in less infiltration across the Site.
- Without implementing any mitigation measures, there is a net deficit of about 1,308 m³ /annum in the post-development infiltration on a yearly basis.
- Based on the estimation, with a diversion of 100% of general roof water for infiltration, the proposed development would maintain pre-development infiltration after the development. Therefore, Cambium would recommend the implementation infiltrating general roof water infiltration or any suitable Low Impact Development (LID) measures at the Site to compensate the infiltration deficit.

5.3 Discussions on LID Measures

It is known that low impact development (LID) practices have received increasing attention as these strategies attempt to capture the runoff and mimic the natural hydrologic cycle.

In general, there are two primary categories of LIDs. The first promotes the infiltration of Stormwater close to the source. These infiltration type LIDs are preferred when hydrogeological and physical conditions are optimal and allow for their emplacement.

The second option captures and slowly releases the water to the groundwater system through the process of storage and filtration by infiltration LIDs. Infiltration targets may be achieved through the incorporation of a variety of stormwater management practices including reduced lot grading, infiltration trenches, grassed swales etc.

Given the proposed Site layout, there is enough space available for the implementation of LID measures, either by means of infiltration galleries or infiltration trenches or any other suitable means. LIDs require 1 metre vertical separation between the LIDs and the water table. Groundwater monitoring was outside the scope of this investigation; however groundwater was not encountered in the overburden to 1 mbgs in the subsurface investigation which is favourable for LIDs.

As there is an infiltration deficit due to the Site development, Cambium recommends implementing any LID measures, using Best Management Practices (BMPs) to enhance the infiltration. However, Cambium is not providing any design of LID facilities, it would be beneficial to consult with design engineers for the LID design recommendations.

6.0 Water Supply Assessment

The pumping test was tailored to in a way to stress the aquifer and assess the ability of the water supply well, TW1, to provide 3,975 L of sustainable volume of water, on a daily basis. The results obtained for the water supply assessment are discussed in the following subsections.

6.1 Hydraulic Pumping Test – TW1

A pumping test was completed by Cambium staff on November 16, 2023. The static water level in TW1 was 12.45 mbtop prior to commencing the pumping test.

The pump was installed at a depth of approximately 36.1 mbtop by Cambium. The available drawdown in the well was therefore approximately 22.9 m (height of static water level above pump).

The hydraulic testing began at 09:05 and continued for a duration of 7 hours 30 minutes. The water withdrawal was altered between 7.5 L/min to 4.5 L/min throughout the first 5 hours of the pumping test (approximately) in order to establish a sustainable discharge rate. The rate changes including reasoning for the rate change are included in the Table 9 below.

Time	Elapsed Pumping Test Time (hour:min)	Flow Rate (L/min)	Comments
09:05	00:00	7.5	Initial pumping rate
12:35	03:30	5	Rate estimated to be unsustainable. Rate reduced.
12:50	03:45	6	Rate increased to find maximum sustainable rate.
13:35	04:30	4.5	Rate estimated to be unsustainable. Rate reduced

Table 9 TW1 Pumping Test Rate Adjustments

At 13:35 the max drawdown was recorded at 33.76 mbtop at 6 L/min. Between 13:35 and 16:35 the water level recovered at 4.5 L/min until the end of the pumping test at 16:35. At the end of the pumping test the water level was 31.60 mbtop.

During the pumping test the water level lowered from 12.45 mbtop to 31.60 mbtop (a drawdown of 19.15 m or 84% of the available drawdown) at the time the test was concluded (16:35). In total, 2,610 L of water was withdrawn from well TW1 during the pumping test.

The pump was shut off at 16:35 and recovery was monitored with a datalogger until 08:38 on November 17, 2023. Recovery to 95% was achieved at 18:15 on November 16, 2023 (a recovery period of 1 hour and 45 minutes). The water level drawdown and recovery curve of the pumping test are outlined in Figure 5.

The volume required for the calculated peak daily sewage flow of 3,975 L was not met due to field constraints. It was determined that the maximum sustained pumping rate is less than 7.5 L/min but greater than 4.5 L/min. If the conservative rate of 4.5 L/min was selected, it would take 14 hours and 44 minutes to withdraw 3,975 L from the well. Figure 5 shows the 4.5 L/min rate still recovering at the end of the pumping test, indicating that steady state conditions of pumping at 4.5 L/min would have less drawdown than what was observed at the end of the completed pumping test. As such, the assumption of the same recovery time of 1 hour and 45 minutes would be conservative. This indicates that 3,975 L of daily water withdrawal from TW1 is achievable and would be considered to be sustainable because the water level would be able to recover within a 24-hour period.

The well was tested at rates from 7 L/min to 4.5 L/min over the duration of the pumping test with the final three hours showing recovery in TW1 while pumping at 4.5 L/min. As such, this flow rate should be considered when the water treatment and distribution system are designed. Water storage may be required to accommodate peak demand use. The pump should also be installed at or below 36.1 mbtop in order to allow for sufficient drawdown in the well.

6.2 Water Quality Results

A groundwater sample was collected from TW1 at the end of the pumping test on November 16, 2023.

The concentrations of all parameters for the November 16, 2023 sample were reported at concentrations less than ODWQS (Ministry of the Environment, 2006) with the exception of

sodium. A complete summary of water quality results and certificates of lab analyses are provided in Appendix F. The results of select parameters are summarized in Table 10.

Parameter	TW1 (Nov 16, 2023)	ODWQS	Criteria	Significance	
Total Coliforms	0 cfu/100ml	0 cfu/100ml	MAC ⁽¹⁾	No microbiological presence detected at time of sampling.	
Escherichia Coli	0 cfu/100ml	0 cfu/100ml	MAC	No fecal contamination detected at time of sampling.	
Hardness	221 mg/L	80-100 mg/L	OG ⁽²⁾	Hard water, may cause scale deposits.	
Sodium	126 mg/L	20 mg/L 200 mg/L	MAC AO ⁽²⁾	See summary below.	

Table 10 Summary of Select Water Quality Paran
--

1. Maximum Acceptable Concentration.

2. Aesthetic Objective and Operational Guidelines.

As shown above, sodium exceeded the operational ODWQS guideline in TW1. Sodium is a health-related parameter. Measured concentrations of sodium were elevated above the limit which serves as a warning to individuals on sodium restricted diets (20 mg/L) in TW1. The sodium concentration of TW1 was 126 mg/L. The concentration of sodium was less than the aesthetic limit and maximum concentration that is treatable (200 mg/L), which indicates that the water is still potable at the measured concentrations.

7.0 Sewage System Design

7.1 Design Sewage Flows

Daily sewage volumes were calculated based on Table 8.2.1.3.B of the Ontario Building Code (OBC) and Site specific information provided by the client in terms of proposed water use. Table 11 below summarizes the design sewage flow anticipated for the Site.

Table 11 Design Sewage Flow

Component	Quantity	OBC Unit Volume	OBC Calculated Flow
Factory - per employee per 8 hour shift	53 Employees	75 L / employee	3,975 L/day

1. No process waters or showers

7.2 Proposed Sewage System Design

7.2.1 Primary Treatment – Septic Tank

Primary Treatment will be achieved by a single septic tank. Based on the 3,975 L/day design flow, the proposed septic tank minimum capacity was calculated as follows:

Minimum Working Volume Required
$$(V) = 3 * Q$$

 $V = (3,975) * 3$
 $V = 11,925 L$

The sewage design flow generated is considered to be non-residential occupancy, therefore a minimum of three-day retention time is utilized for primary treatment. As such, the following septic tank and associated components have been selected:

- One septic tank: OBC approved two compartment precast concrete septic tank with a working volume of 12,000 L.
- One effluent filter: PolyLok PL122 (or equivalent) effluent filter complete with service handle and a daily flow rating of 13,638 L/day.

7.2.2 Pump Chamber

The septic tank effluent will flow by gravity to the following selected pump chamber:

• One pump chamber: OBC approve single compartment precast concrete tank with a working volume of 3,600 L.

According to OBC section 8.6.1.3.(4), where a pump is required, the pump shall be designed to discharge a dose of at least 75% of the internal volume of the distribution pipe within 15 minutes. The dose volume is calculated as follows:

 V_{dose} = 5.9 * L where,

- Q = Daily Sewage Design Flow = 3,975 L/day
- L = Total length of distribution pipe in metres (see below)
- V_{dose} = 5.9 * (30m * 2 cells)
- V_{dose} = 354 L

The pump selected to dose the leaching bed must be able to satisfy a minimum dose volume of 354 L per pump cycle. The pump will operate on demand utilizing a 2-float tree with the lower float operating as start/stop working and the other acting as an alarm float. The alarm float should be positioned at an appropriate height to allow for adequate response time. Onsite float testing shall be completed prior to start-up. All electrical connections must be completed by a certified electrician using two separate circuit breakers, one to operate the pump and one to operate the alarm. Nothing else should be connected to the sewage system circuit breakers.

7.2.3 Distribution Box

The pump chamber will discharge effluent into a distribution box which will distribute effluent to the two filter bed cells. A small distribution box is required that allows one inlet port and two outlet ports. Each outlet to be 100 mm PVC equipped with a 100 mm Polylok equalizer (or equivalent).

7.2.4 Subsurface Disposal

According to the native soil conditions, septic tank effluent will be disposed in a partially raised filter bed containing two cells 5 m apart in accordance with Section 8.7.5 of the OBC. The layout and details of the filter bed are included as Figure 6 to Figure 9.

Filter bed specifications:

- Design flow (Q) = 3,975 L/day
- Native soil T-time (T) = 30 min/cm
- Loading Rate (LR) based on Table 8.7.4.1. in OBC = 8 (L/m²)/day
- Configuration: partially raised
- Filter and Stone area = Q/50 when Q > 3,000 L/day = 3,975 / 50 = 79.5 m²
 - Design contains: Two cells of 6.0 m x 7.0 m = $42.0 \text{ m}^2 \text{ x } 2 \text{ cells} = 84.0 \text{ m}^2$
- Distribution pipe: 6 runs of 5.0 m on 1.2 m centres = 30.0 m x 2 cells = 60.0 m of total distribution pipe
- Contact area (filter media sand) = QT/850 = (3,975 x 30) / 850 = 140.2 m²
 - Design contains 18.0 m x 8 m = 144 m²
- Mantle area (imported sand fill) = $Q/LR = 3,975 / 8 = 496.9 \text{ m}^2$
 - Design contains: 24.2 m x 25.1m = 607.4 m²
 - Therefore, the required contact area for the loading rate is satisfied based on Table 8.7.4.1 of the OBC.

7.3 Permit Application

A sewage system permit application for the Township of Douro-Dummer is included as Appendix I. The permit application has the necessary designer section completed by Cambium. The remaining sections, Sections A to I are to be completed by the owner and Schedule 2 is to be completed by the installer.

8.0 General Design Requirements

- The risers on all tanks must require tools and/or keys to access.
- The sewage tanks and leaching bed shall meet the minimum setbacks prescribed in Part 8 of the Ontario Building Code.
- All sewage system components must have appropriate protection from vehicular traffic.
- All tanks shall be equipped with cast in place riser to at least 100 mm above ground surface with secured lid and safety screen.
- If venting through the buildings cannot be achieved, then the tanks are required to be equipped with Polylok 308-ACC 610 mm (24 inch) access lid equipped with 0.9 kg (2 lbs) of activated charcoal pellets for odour control.
- On-site flow and control testing shall be completed prior to start-up of the sewage works in order to allow for adjustments to the pump run controls if necessary.

9.0 Electrical Requirements

The intent of this section is to provide the licenced electrician guidance for expected operations for the pumps, floats, control panel, and connections.

The electrical design and installation of electrical equipment wiring and grounding shall be completed according to all requirements of the Ontario Hydro Electrical Safety Code including all appendices and bulletins issued by the Electrical Safety Authority as applicable to this project.

Any alarm float switches required shall have their own circuit breaker. Nothing else should be connected to any alarm circuit breakers. Alarms must consist of an audible alarm and red beacon light located in a conspicuous location to attract attention and elevated to prevent tampering.

Any junction boxes and control panels are required should be mounted on a standard pressure treated wooden post (or equivalent) and secure with concrete to 1.2 metres below grade to prevent frost heave. The junction box must be mounted at an appropriate elevation above grade, outdoor rated, tamper proof, and complete with lockable cover.

10.0 Conclusions and Recommendations

Cambium was retained by Kawartha Utility Services Ltd. to complete a hydrogeological assessment and sewage system design for the property located at 4488 County Road 29, Township of Douro-Dummer, Ontario

The surficial geology of the Site is characterized by sandy silt to silty sand-textured till.

A test pitting investigation was conducted at the Site where a total of six test holes were completed to determine subsurface conditions and determine necessary information for the proposed sewage system design. Test pits were all terminated on bedrock with depths ranging from 1.22 mbgs to 2.51 mbgs. Soils generally consisted of a topsoil layer overlying a sandy silt layer and a sandy silty gravel layer. No groundwater was encountered in any test pits.

The in-situ testing completed at depths ranging from 0.5 m to 1.0 m in native soils below the topsoil layer determined estimated hydraulic conductivities ranged between 3.13×10^{-7} m/sec and 2.93×10^{-6} m/sec with infiltration rates ranged between 34 mm/hour and 61 mm/hour.

The conceptual water balance indicates that there will be an infiltration deficit of about 1,308 m³/annum in the post-development infiltration upon the full development of the Site. It is expected that this infiltration deficit can be accommodated by the implementation of LID measures, either by means of infiltration galleries or infiltration trenches or any other suitable means provided by others.

The water supply assessment completed on the newly drilled well, TW1. The results of the TW1 pumping test indicates that the daily sewage volume of 3,975 L of daily water withdrawal from TW1 is achievable.

The water sample obtained during the TW1 pumping test exhibited favourable results with sodium (126 mg/L) being the only parameter exceeding the ODWQS criteria. The concentration of sodium was less than the aesthetic limit and maximum concentration that is treatable (200 mg/L).

A daily sewage design flow was calculated using OBC Tables 8.2.1.3.B for the Site which was determined to be 3,975 L/day. A detailed sewage system design was completed having a

minimum septic tank capacity of 12,000 L, a 3,600 L pump chamber to dose the leaching bed, and a partially raised two-cell filter bed having a total footprint of 25.1 m x 24.2 m.

11.0 Closing

We trust that the information in this submission meets your current requirements. If you have any questions regarding the contents of this report, please contact the undersigned.

Respectfully submitted,

Cambium Inc.

DocuSigned by: Warn Um

-6C8CA15FD6B4444...

Warren Young, P.Eng. Coordinator, Hydrogeologist

— DocuSigned by:

677F3F2E4427404

Kevin Warner, M.Sc., P.Geo (Ltd). BCIN Group Manager-Water & Wastewater C9F8935E96D14CC

Jeremy Tracey, P.Eng. Project Manager

\\cambiumincstorage.file.core.windows.net\projects\18800 to 18899\18842-001 Kawartha Utility Services Ltd. HydroG Assemnt - 4488 County Road 29\Deliverables\REPORT - HydroG\Final\2024-03-08 RPT HydroG Assessment and WW Design- 4488 County Road 29.docx

12.0 References

- Chapman, L.J. and D.F. Putnam. (1984). *The Physiography of Southern Ontario: Ontario Geological Survey, Special Volume 2.*
- Chapman, L.J. and D.F. Putnam. (1984). *The Physiography of Southern Ontario: Ontario Geological Survey, Special Volume 2.*
- MECP. (2024a). Retrieved from Ministry of the Environment, Conservation, and Parks Water Well Information System: (https://www.ontario.ca/environment-and-energy/map-wellrecords)
- MECP. (2024b, February). Retrieved from Ministry of Environment, Conservation, and Parks -Source Protection Information Atlas: https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=Sou rceWaterProtection.SWPViewer&locale=en-CA
- Ministry of the Environment. (2003). Stormwater Management Planning and Design Manual .
- Ministry of the Environment. (2006). *Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines.* Ministry of the Environment.
- MNRF. (2024). Make a Topographic Map. Ontario, Canada.
- OGS. (2007). *Paleozoic Geology of Southern Ontario; Miscellaneous Release -- Data 219.* Ontario Geological Survey.
- OGS. (2010). Surficial geology of Southern Ontario; Miscellaneous Release Data 128 -Revised. Ontario Geological Survey.
- OGS. (2010). Surficial geology of Southern Ontario; Miscellaneous Release Data 128 -Revised. Ontario Geological Survey.
- OMMAH. (1997). Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions. Ontario Ministry of Municipal Affairs and Housing.

13.0 Standard Limitations

Limited Warranty

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

Site Assessments

A site assessment is created using data and information collected during the investigation of a site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.

Only conditions at the site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

Reliance

Cambium's services, work and reports may be relied on by the client and its corporate directors and officers, employees, and professional advisors. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

Limitation of Liability

Potential liability to the client arising out of the report is limited to the amount of Cambium's professional liability insurance coverage. Cambium shall only be liable for direct damages to the extent caused by Cambium's negligence and/or breach of contract. Cambium shall not be liable for consequential damages.

Personal Liability

The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.

Appended Figures

HYDROGEC ASSES AND SE SYSTEM KAWARTH SERVICI 4488 Count Douro-Dum	DLOGICAL SMENT WAGE DESIGN A UTILITY ES LTD. ry Road 29 ner, Ontario
LEG	END
🔶 Drilled We	ell
🖶 Test Pit	
Guelph Pe Test	rmeameter
Proposed Footprint	Building
Site (appro	oximate)
Notes: Overlay image was created by EcoVue 22-2469, drawing no. CP1, titled. Conce License - Ontario. Distances on this plan are in metres an dividing py 0.3048. Cambium Ins. makes every effort to er cambium Ins. makes even effort to er even effort to even effort to er cambium Ins. makes even effort to er even effort to even effort to even effort to er even effort to even effort to even effort to even effort to er even even effort to even effort to even effort to even effort to er even even effort to eve	e Consulting Services Inc., project no. pr Pian, deted August 22, 2023. ensed under the Open Government nd can be converted to feet by usure this map is free from errors but ages due to error or omissions. This ir legal purposes. It is intended for
Peterbo Tel: (705) 74 ww	194 Sophia Street rough, Ontario, K9H 1E5 2.7900 Fax: (705) 742.7907 w.cambium-inc.com
SITE	PLAN
Project No.: 18842-001	Date: March 2024 Rev.:
Scale: 1:1,500	Projection: NAD 1983 UTM Zone 17N

Checked by:

MAT

Figure:

JT

2

Docusign Envelope ID: 6166FB0C-41E7-40A5-AD72-576418D33F4C

Docusign Envelope ID: 6166FB0C-41E7-40A5-AD72-576418D33F4C

4488 County Road 29, Douro-Dummer, Ontario Cambium Reference: 18842-001 November 16, 2023 Technician: J. Munro

Figure 5 - TW1 Pumping Test Hydrograph

Docusign Envelope ID: 6166FB0C-41E7-40A5-AD72-576418D33F4C

	HYDROGEOLOGICAL ASSESSMENT AND SEWAGE SYSTEM DESIGN KAWARTHA UTILITY SERVICES LTD. 4488 County Road 29 Douro-Dummer, Ontario
	LEGEND
	Gueiph Permeameter
	H Test Pit
	🕁 Drilled Well
	Contour Line (1.0m intervals)
	Fenceline
	Edge of Bush
	Property Boundary (approximate)
	Driveway/Parking Lot
	Notes: 1. Features on this plan were obtained from an existing Concept Plan created by EcoVue Consulting Services, project no. 22-2469, drawing no. CP1, dated August 22, 2023 2. Distances on this plan are in metres and can be converted to feet by dividing by 0.3048. 3. This plan is for illustrative purposes only. REVISION REVISED BY DATE Date
	DRAFT
	194 Sophia Street Peterborough, Ontario, K9H 1E5 Tel: 705-742-7900 Araz 705-742-7907 www.cambium-inc.com
	PROPOSED SEWAGE SYSTEM SITE PLAN
}	Project No.: Date: March 2024 18842-001 Rev.:
	Horizontal Scale: Vertical Scale:
	1:750 N/A Drawn By: Checked By: Figure: _
<u>н</u>	

-

-

HYDROGEOLOGICAL ASSESSMENT AND SEWAGE SYSTEM DESIGN

KAWARTHA UTILITY SERVICES LTD. 4488 County Road 29 Douro-Dummer, Ontario

MAT

	HYDROGEOLOGICAL ASSESSMENT AND SEWAGE SYSTEM DESIGN KAWARTHA UTILITY SERVICES LTD. 4488 County Road 29 Douro-Dummer, Ontario
LL WITH DWING OF PIPE	
	Notes:
	be converted to feet by dividing by 0.3048. REVISION REVISED BY DATE
	DRAFT
	194 Sophia Street Peterborough, Ontario, K9H 1E5 Tel: 705-742-7900 Fax: 705-742-7907 www.cambium-inc.com
	FILTER BED PROFILE
	Project No.: Date: March 2024 18842-001 Rev.:
	Prorizontal Scale: Vertical Scale: 1:100 N/A Drawn By: Checked By: Figure:
	MAT JT X

Docusign Envelope ID: 6166FB0C-41E7-40A5-AD72-576418D33F4C

Appendix A Proposed Development Plan and Land Information

SPIA Map

Ontario (C) (

May Not be Reproduced without Permission. THIS IS NOT A PLAN OF SURVEY. Map Created: 2/16/2024 Map Center: 44.44546 N, -78.25702 W

Docusign Envelope ID: 6166FB0C-41E7-40A5-AD72-576418D33F4C

> Appendix B Test Pit Logs

TEST PIT LOGS

TABLE 1: TEST PIT LOGS

Test Pit ID & Location	Depth (mbgs ¹)	Material Description	Sample
TD 101 22	0 - 0.30	Topsoil Brown candy silt come clay, trace group, loose, dry	C51
TP 101-25	0.30 - 0.66	Brown, sandy silt, some clay, trace graver, loose, dry	631
	0.66 - 1.98	Brown, sandy slity gravel, trace clay, loose, dry	662
	1.98		652
	0 - 0.28		
TP 102-23	0.28 - 0.64	Red/brown, sandy silt, some clay, trace gravel, loose, dry	GS1
	0.64 - 2.51	Brown, sandy silty gravel, trace clay, trace cobble, loose, dry	GS2
	2.51	TP terminated on bedrock	
	0 - 0.25	Topsoil	
TP103-23	0.25 - 0.56	Red/brown, sandy silt, some clay, trace gravel, loose, dry	GS1
	0.56 - 1.78	Brown, ,sandy silty gravel, trace clay, trace cobble, loose, moist	GS2
	1.78	TP terminated on bedrock	
	0 - 0.30	Topsoil	
TP104-23	0.30 - 0.86	Red/brown ,sandy silt, some clay, trace gravel, loose, dry	GS1
	0.86 - 1.47	Brown, gravelly sand, trace cobble, loose, dry	GS2
	1.47	TP terminated on bedrock	
	0 - 0.20	Topsoil	
TP105-23	0.20 - 0.38	Red/brown sandy silt, some clay, loose, dry	GS1
	0.38 - 1.22	Shale	
	1.22	TP terminated on bedrock	
	0 - 0.25	Topsoil	
TP106-23	0.25 - 0.56	Yellow/brown, sand, trace silt, loose, dry	GS1
	0.56 - 1.02	Brown grey, sandy silty gravel, trace clay, loose, dry	GS2
	1.02 - 1.47	Shale	
	1.47	TP terminated on bedrock	

¹mbgs = metres below ground surface

> Appendix C Grain Size Analysis

CAMBIUM

Grain Size Distribution Chart

Project Number:	18842-001	Client:	Kawartha Utility Services Ltd					
Project Name:	HydroG Assessment - 4488 C	County Rd 29, Douro	vro-Dummer					
Sample Date:	August 4, 2023	Sampled By:	Josh Munro - Cambium Inc.					
Location:	TP102-23 GS2	Depth:	0.6 m to 2.5 m	Lab Sample No:	S-23-1780			

UNIFIED SOIL CLASSIFICATION SYSTEM								
	SAND (<4.75 mm to 0.075 mm)			GRAVE	L (>4.75 mm)			
GLAT & SILT (SU.075 MM)	FINE	MEDIUM	COARSE	FINE	COARSE			

	MIT SOIL CLASSIFICATION SYSTEM								
CLAY	си т	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	ROLILDERS	
CLAY	SILI		SAND			GRAVEL	•	BOULDERS	

Borehole No.	Sample No.		Depth	Gravel	Sand		Silt	Clay	Moisture
TP102-23	GS2		0.6 m to 2.5 m	39	30		25	6	6.5
	Description		Classification	D ₆₀	D ₃₀		D ₁₀	Cu	C _c
Sandy,	Silty Gravel, trace Clay	/	SM	4.00	0.070)	0.006	666.67	0.20

Additional information availabe upon request

Issued By:

Date Issued:

November 3, 2023

(Senior Project Manager)

866.217.7900 | cambium-inc.com 194 Sophia St. | Peterborough | ON | K9H 1E5 CAMBIUM

Grain Size Distribution Chart

Project Number:	18842-001	Client:	Kawartha Utility Services Ltd					
Project Name:	HydroG Assessment - 4488 C	County Rd 29, Douro	ouro-Dummer					
Sample Date:	August 4, 2023	Sampled By:	Josh Munro - Cambium Inc.					
Location:	TP104-23 GS1	Depth:	0.3 m to 0.8 m	Lab Sample No:	S-23-1781			

UNIFIED SOIL CLASSIFICATION SYSTEM								
	SAND (<4.75 mm to 0.075 mm)			GRAVE	L (>4.75 mm)			
	FINE	MEDIUM	COARSE	FINE	COARSE			

	MIT SOIL CLASSIFICATION SYSTEM								
CLAY	си т	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	ROLILDERS	
CLAY	SILI		SAND			GRAVEL	•	BOULDERS	

Borehole No.	Sample No.		Depth	Gravel	Sand		Silt	Clay	Moisture
TP104-23	GS1		0.3 m to 0.8 m	1	31		54	14	9.8
	Description		Classification	D ₆₀	D ₃₀		D ₁₀	Cu	C _c
Sandy Silt	, some Clay, trace Gra	vel	ML	0.06	0.014	1	-	-	-

Additional information availabe upon request

Issued By:

Date Issued:

194 Sophia St. | Peterborough | ON | K9H 1E5

November 3, 2023

(Senior Project Manager)

Appendix D Infiltration Testing Calculations

4488 County Road 29, Douro-Dummer, Ontario Cambium Reference: 18842-001 October 25, 2023 Technician: J. Munro

							00400.00						
Location		Location	GP102-23			GP103-23							
GPS Coord					GPS Coord								
Soil		Fine sand, trace	silt, trace grav	el	Soil	Gravelly sand				Fine sand, trace silt			
Depth	0.	65 m	0.6	0.65 m		0.67m 0.67m		0.46 m		0.46 m			
Inner/Dual	Ir	ner	In	ner	Inner/Dual		Inner		Inner		Inner		Inner
	Head	4cm	Head	8cm		Head	3cm	Head	6cm	Head	3cm	Head	6cm
Time (min)	Level	∆h/∆t cm/min	Level	∆h/∆t cm/min	Time (min)	Level	∆h/∆t cm/min	Level	Δh/Δt cm/min	Level	$\Delta h/\Delta t \ cm/min$	Level	$\Delta h/\Delta t \ cm/min$
0	5		4		0	15		5.5		14		21.5	
1	10.1	5.1	7.3	3.3	1	17.3	2.3	7.4	1.9	14.9	0.9	22	0.5
2	14.5	4.4	12.3	5	2	19	1.7	10.6	3.2	15.4	0.5	22.6	0.6
3	19	4.5	15.7	3.4	3	21.8	2.8	13.9	3.3	15.7	0.3	23.2	0.6
4	23	4	18	2.3	4	24.4	2.6	17	3.1	15.9	0.2	23.9	0.7
5	26.4	3.4	20.1	2.1	5	26.5	2.1	20	3	16.1	0.2	24.6	0.7
6	30.1	3.7	20.2	2.1	6	28.6	2.1	22.8	28	16.3	0.2	25.2	0.6
7	33.2	3.7	25.8	3.6	7	30.7	2.1	25.0	2.0	16.6	0.2	25.2	0.0
, ,	33.0	3.7	20.0	3.0	,	30.7	2.1	23.4	2.0	10.0	0.5	25.0	0.0
0	40.4	3.2	29.1	3.5	0	25.1	2 1	20.2	2.0	17 2	0.4	20.0	0.8
10	40.4	3.4	25.2	2 2 2	10	27.2	2.4	30.5	2.7	17.5	0.3	27.5	0.7
10	43.0	3.2	33.3	3.2	10	37.3	2.2	33.0	2.7	17.0	0.3	20	0.7
11	40.0	3.2	30.4	3.1	11	39.5	2.2	37.4	3.0	17.9	0.3	20.7	0.7
12	49.0	2.8	41.1	2.7	12	41.7	2.2	40.1	2.7	10.1	0.2	29.4	0.7
13	52.0	3	44	2.9	13	43.9	2.2	43	2.9	18.4	0.3	30	0.6
14	55.5	2.9	40.7	2.7	14	45.9	2	45.7	2.7	18.7	0.3	30.0	0.6
15	58.3	2.8	49	2.3	15	48	2.1	48.3	2.0	19	0.3	31.3	0.7
10	61.3	3	51.5	2.5	10	50	2	51	2.7	19.2	0.2	32	0.7
17	64.2	2.9	54	2.5	1/	52.2	2.2	53.8	2.8	19.5	0.3	32.7	0.7
18	66.7	2.5	50.3	2.3	18	54.3	2.1	50.0	2.8	19.8	0.3	33.4	0.7
19	69.2	2.5	58.5	2.2	19	56.2	1.9	59.4	2.8	20.1	0.3	34	0.6
20	/1./	2.5	60.6	2.1	20	58.4	2.2	62.2	2.8	20.4	0.3	34.0	0.0
21	74.2	2.5	62.6	2	21	60.4	2	65	2.8	20.6	0.2	35.3	0.7
22	/6./	2.5	64.6	2	22	62.4	2	6/./	2.7	20.9	0.3	30	0.7
23			66.6	2	23	64.4	2	70.4	2.7	21.2	0.3	36.7	0.7
24			68.6	2	24	66.5	2.1	/3.1	2.7	21.5	0.3	37.4	0.7
25			70.6	2	25	68.6	2.1	75.8	2.7	21.8	0.3	38.1	0.7
26			/2.6	2	26	/0./	2.1			22.1	0.3	38.7	0.6
27			74.6	2	27	72.8	2.1			22.3	0.2	39.4	0.7
28					28	74.9	2.1			22.6	0.3	40.1	0.7
29					29					22.9	0.3	40.8	0.7
30					30					23.2	0.3		
Slope (cm/min)	2	75	2	.14			2.07		2.74		0.27		0.67
Single Head K (m/sec)	2.0	6E-06	1.0	DE-06		3.	34E-06	2.	52E-06	2.	.36E-07	3.	89E-07
Average Single Head K		1.53	E-06				2.9	3E-06			3.13	E-07	
Infiltration Rate (mm/hr)	5	6.0	4	6.3			63.7		59.1		31.6		36.0
		Geomean	50.9				Geomean	61.3			Geomean	33.7	
		5	2					61			3	4	
Infiltration Rate (mm/hr)													
		1	2					10			1	8	
Percolation Time (min/cm)	12									10			

gle Head Method (1)		Single Head Method (2)		Average
Rese	voir Cross-sectional area in cm ²	Reservoir Cross-secti	onal area in cm ²	K _{fs} = 1.53E-04 cm/
(enter "35.22" for Combined Enter Enter	and "2.16" for Inner reservoir): 2.16 water Head Height ("H" in cm): 4 he Borehole Radius ("a" in cm): 3	(enter "35.22" for Combined and "2.16" for Enter water Head He Enter the Borehole Ra	nner reservoir): 2.16 ght ("H" in cm): 8 dius ("a" in cm): 3	9.20E-03 cm/ 1.53E-06 m/ 3.62E-03 incl
nter the soil texture-structure category (er	ter one of the below numbers): 3	Enter the soil texture-structure category (enter one of the b	elow numbers): 3	6.03E-05 incl
1. Compacted, Structure-less, clay	ey or silty materials such as	1. Compacted, Structure-less, clayey or silty materi	als such as	Φ _m = 1.28E-03 cm
landfill caps and liners, lacustrine or	marine sediments, etc.	landfill caps and liners, lacustrine or marine sedimen	ts, etc.	
Soils which are both fine texture	d (clayey or silty) and	Soils which are both fine textured (clayey or silty) and	1
unstructured; may also include som	e fine sands.	unstructured; may also include some fine sands.		
 Most structured soils from clays 	through loams; also includes	Most structured soils from clays through loams;	also includes	rh -
applicable for agricultural soils	s. The category most frequently	unstructured medium and fine sands. The category i	nost frequently	9
A Coarse and gravely sands' may	also include some highly	applicable for agricultural soils.		
structured soils with large and/or n	imerous cracks, macropors, etc	 Coarse and gravely sands; may also include som structured soils with large and/or numerous cracks, 	macropors, etc	
Steady State Rate of Wate	r Level Change ("R" in cm/min): 2.7500	Steady State Rate of Water Level Change ("R" in cm/min): 2.1400	
Res Type 2.16		Res Type 2.16		
Н 4		H 8		-
a 3	$\alpha^{*} = 0.12 \ cm^{-1}$	a 3	$\alpha^{*} = 0.12 \ cm^{-1}$	T T
H/a 1.333 a* 0.12	C = 0.685985	H/a 2.66667	C = 1 109993	*
C0.01 0.705	Q = 0.099	C0.01 1.07227	Q = 0.07704	
C0.04 0.73	-	C0.04 1.1283		
C0.12 0.686	$K_{fs} = \frac{2.06E-04}{2.06E-04} cm/sec$	CO.12 1.10999	K _{fs} = <u>1.00E-04</u> cm/sec	
C0.36 0.686	1.24E-02 cm/min	C0.36 1.10999	6.02E-03 cm/min	
B 2 750	4.87E-03 inch/min	R 2 140	2.37E-03 inch/min	1H
Q. 0.099	8.12E-05 inch/sec	Q 0.07704	3.95E-05 inch/sec	
pi 3.142		pi 3.1415		2a
	$\Phi_{m} = \frac{1.72 F_{-0.3}}{1.72 F_{-0.3}} cm^2 / min$		$\phi = \rho_{acr os} cm^2 / min$	the state of the s

1

Calculation formulas related to one-head and two-head methods. Where *R* is steady-state rate of fall of water in reservoir (cm), *L* is borehole radius (cm) *H_i* is microrogoic capillary height fractor which is detailed according to the rol texture-structure category. For one-head method, only *G* needs to be calculated while for two-head method, *C*₁ and *C*₂ are calculated (Zag et al. 1998). Solid Textures-Structure Category in the structure s

Soil Texture-Structure Category	a*(cm-1)	Shane Factor	contraction of a contraction		- a surfix more (a sur succes).
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{(H_2/2)}\right)^{0.672}$	One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
sediments, etc.		(2.081 + 0.121(12/a))	One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \wedge Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.663} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.663} \end{split}$	Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$	$\begin{split} G_1 &= \frac{H_2 C_1}{\pi \Big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \Big)} \\ G_2 &= \frac{H_1 C_2}{\pi \Big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \Big)} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093 (H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093 (H_2/a)}\right)^{0.754} \end{split}$		$Q_2 = R_2 \times 35.22$	$\begin{split} K_{fz} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_1^2 + a^2 C_2) C_1}{2\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ (2H_1^2 + a^2 C_1 C_1 - H_2 C_1) \\ (2H_1^2 + a^2 C_1) \\$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$	Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} & G_4 = \frac{(2H_1^{*} + a^*C_2)C_2}{2\pi \left(2H_1^{*}H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\right)} \\ & \Phi_m = G_3Q_1 - G_4Q_2 \end{split}$

Guelph	Permeameter Ca	iculations	Recult	
gle Head Method (1)		Single Head Method (2)	nesur	Average
Res	ervoir Cross-sectional area in cm ²	Reservoir Cross	-sectional area in cm ²	K _{fs} = 2.93E-04 cm
(enter "35.22" for Combine Ente Enter	d and "2.16" for Inner reservoir): 2.16 r water Head Height ("H" in cm): 3 the Borehole Radius ("a" in cm): 3	(enter "35.22" for Combined and "2.16 Enter water He: Enter the Boreho	" for Inner reservoir): 2.16 ad Height ("H" in cm): 6 Ide Radius ("a" in cm): 3	1.76E-02 cn 2.93E-06 m, 6.92E-03 in 1 15E 04 in
nter the soil texture-structure category (e	nter one of the below numbers): 4	Enter the soil texture-structure category (enter one of	the below numbers): 4	1.15E-04 Inc
1. Compacted, Structure-less, cla	vey or silty materials such as	1. Compacted, Structure-less, clayey or silty n	naterials such as	Φ _m = 8.14E-04 cn
landfill caps and liners, lacustrine of	r marine sediments, etc.	landfill caps and liners, lacustrine or marine sec	liments, etc.	
Soils which are both fine texture	ed (clayey or silty) and	2. Soils which are both fine textured (clayey o	r silty) and	Π
unstructured; may also include sor	he fine sands.	unstructured; may also include some fine sand	5.	
Most structured soils from clay	s through loams; also includes	Most structured soils from clays through lo	ams; also includes	11
unstructured medium and fine san	ds. The category most frequently	unstructured medium and fine sands. The cate	gory most frequently	n
A Coarse and gravely cande: may	aleo includo como highly	applicable for agricultural soils.		
structured soils with large and/or r	numerous cracks, macropors, etc	 Coarse and gravely sands; may also include structured soils with large and/or numerous critical 	acks, macropors, etc	
Steady State Rate of Wat	er Level Change ("R" in cm/min): 2.0700	Steady State Rate of Water Level Cha	ange ("R" in cm/min): 2.7400	
Res Type 2.16		Res Type 2.16		
н з		H 6		
a 3	$\alpha^{*} = 0.36 \ cm^{-2}$	a 3	$\alpha^{*} = 0.36 \ cm^{-2}$	V -
H/a 1 a* 0.35	C = 0.558165	H/a 2 a* 0.36	C = 0.911966	
C0.01 0.588	Q = 0.07452	C0.01 0.90429	Q = 0.09864	
CO.04 0.606		C0.04 0.94462		
C0.12 0.558	$K_{fs} = \frac{3.34E-04}{3.34E-04} cm/sec$	C0.12 0.91197	$K_{fs} = \frac{2.52E-04}{2.52E-04} cm/sec$	
C0.36 0.558	2.00E-02 cm/min	C0.36 0.91197	1.51E-02 cm/min	
R 2 070	7.88F-03 inch/min	R 2 740	5.96E-03 inch/min	TH
Q. 0.075	1.31E-04 inch/sec	Q 0.09864	9.93E-05 inch/sec	
pi 3.142		pi 3.1415		2a
	$\Phi_m = \frac{9.27 F_{-0.4}}{2.00} cm^2 / min$		$\Phi = 7.015.04 \text{ cm}^2/\text{min}$	

Calculation formulas related to shape factor (C). Where H_i is the fart water head height (cm), H_j is the second water head height (cm), A_j is borehole radius (cm) and a⁺ is microscopic capilary length factor which is detedded according to the soil extra-estructure category. (Cmb)s, H_j is is Soil saturated hydraulic conductivity (cms), A_j is Soil matrix data (Category Category Category

Son restare Structure Category	te (em)	Shupe I heroi				C × 0
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.091 + 0.131(H_{2/a})}\right)^{0.672}$		One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{c_1 \times c_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$ $C_1 \times Q_1$
		(2.001+0.121(-7d))		One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/a}}{1.992 + 0.091(H_{1/a})}\right)^{0.663}$ $C_{2} = \left(\frac{H_{2/a}}{1.992 + 0.091(H_{2/a})}\right)^{0.663}$		Two Head,	$Q_1 = \bar{R}_1 \times 35.22$	$\begin{split} G_1 &= \frac{H_2 C_1}{\pi \Big(2H_1 H_2 (H_2 - H_2) + a^2 (H_1 C_2 - H_2 C_1) \Big)} \\ G_2 &= \frac{H_1 C_2}{\pi \Big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \Big)} \end{split}$
Most structured soils from clays through loans; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$			$Q_2 = R_2 \times 35.22$	$\begin{split} K_{fs} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + \alpha^2 C_2) C_1}{2\pi \left(2H_1 H_2 (H_2 - H_1) + \alpha^2 (H_1 C_2 - H_2 C_1) \right)} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754} \end{split}$		Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2 C_1)C_2}{2\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_2 C_2 - H_2 C_1))} \\ \Phi_m &= G_3 Q_1 - G_4 Q_2 \end{split}$
			l.			

Calculation formulas related to unage factor (C). Where H is the factor which is decided according to the soil extra-structure category: (cm), *a* is borehole radius (cm) and *a*^{*} is microcopic capillary length factor which is decided according to the soil texture-structure category: For one-lead anthol, only (C steeds to be calculated while for two-head method, C and C see calculated (2 ang et al. 1995). Soil Texture-Structure Category: (cm) *H*₂ is the factor which is decided according to the soil texture-structure category: Soil Texture-Structure Category: (cm) *H*₂ is the factor which is decided according to the soil texture-structure category: (cm) *H*₂ is soil saturated hydraulic conductivity (cm) *A*₀ is is Soil matric flary potential (cm)²/₂*A*₀ is Borehole radius (cm), *H*₂ is the factor which is decided according to the soil texture-structure category: (cm) *H*₂ is soil saturated hydraulic conductivity (cm) *A*₀ is is bene factor (from Table 2).

Soil Texture-Structure Category	$\alpha^{*}(\text{cm}^{-1})$	Shape Factor			00	
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01 $C_1 = \left(\frac{H_2/a}{1-2(1-2)^{-1/2}}\right)^{0.672}$		One Head, Combined Reserv	voir $Q_1 = \overline{R}_1 \times 35.22$	$K_{fg} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$	
sediments, etc.		$(2.081 + 0.121(\frac{12}{a}))$	One Head, Inner Reservoi	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$	
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/a}}{1.992 + 0.091(^{H_{1/a}})}\right)^{0.663}$ $C_{2} = \left(\frac{H_{2/a}}{1.992 + 0.091(^{H_{2/a}})}\right)^{0.663}$	Two Head,	$Q_1 = \bar{R}_1 \times 35.22$	$\begin{split} G_1 &= \frac{H_2 C_1}{\pi (2H_1 H_2 (H_2 - H_2) + a^2 (H_1 C_2 - H_2 C_1))} \\ G_2 &= \frac{H_1 C_2}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \end{split}$	
Most structured soils from clays through loans; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$		$Q_2 = R_2 \times 35.22$	$\begin{split} K_{fs} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2 C_2) C_1}{2\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \end{split}$	
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$	Two Head, Inner Reservoi	$Q_1 = \bar{R}_1 \times 2.16$ r $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_2^+ + a^2 c_1)C_2}{2\pi (2H_2H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ \phi_m &= G_3Q_1 - G_4Q_2 \end{split}$	

> Appendix E Test Well Record

Ontario S Ministry of the Environment, Conservation and Parks Well Tag No. (Place Stocker and Parks Well Record Regulation MCI Conserva Tag#:A366720 () Mastra & Massarrad ota reconstant in-Wall Owner's Information C) Bank Tig by 20ml Deeron SERVICES UTD 61 KAWARTHA GTILITY. Proting Rental Code 111 KOL 2140 ONT LAKEFIELD 4108 HWY Z8 Selwyn 4488 Camby rd 29 Property Contes Ontario KOLZHO LakeField reterborcust Cenne Morthway NAD 8 3 1 77181564923064 Overburden and tacked 0 6 1111 Sand Stones 111 Brown 6 8 Shale grey 2 120 Fractured Limestore 6 1212 Results of Well Yield Testing 11.1 Annular Space 4 Depth Set al (m/ll) served gammed (mill) 20 1/2" Bentonite Chip 6 Bags 0 37 . 89' 40 set at (mill) 89 . 120' 88 Method of Construction Well Use 3 gpm 88 Netl Gaset Municipal dentiliat. 45 87 Mortis 11:1 Test Hour Driving Rotary (Raversa) 1111 west end of pu Digging wither any 10 85 Conting & A 48 pring 90' • 50 10 836 Other specify Status of Well Construction Record - Casing 2 80 53 Water Supply film) vitable contract he Open Hole OR Material Generatized, Filmentices 2 78' Replacement Wali 115' 55 From (CITATION) Treat Hour 57 1 75 Recharge Well 188 +3 64 Steel 20 3 gpm Deveatoring Weil 40 68 40 62' Closervation and/or Monitoring Hole 2.5 gar Alteration (Construction) 50 59 60 80 141' Abandoned, Insufficient Supply 60 90 Abandoned, Poor Water Quality Map of Well Location Construction Record - Screen Abandoned, other, specify 2 Stenno Other, specify R N Water Details Hole Dian (m/ft) To Water found at Depth Kind of Water. Diameter (cm/m) Fresh 40 ' (nvlt) Gas Other, specify Water found at Depth Kind of Water Fresh Untested From 10" 0 20 + (m/ft) Gas Other, specify r found at Depth Kind of Water Presh Untested 6" 120 1111 1 this (m/ft) Gas Other, specify Well Contractor and Well Technician Inform Name of Well Contractor **Nell Contractor's Licence Ne** Burgess Well Drilling Business (Street Number/Name) 1455 Municipality 467 Emily Park rd omemer siness E-mail Address Ontario KOLZWO Bus Telephone No. (inc. area code) Name Ministry Use Only Name of Weil Technician (Last Name, First Name) Name of Weil Technician (Last Name, First Name) Journal San-Clark, John Robert are of Technician and for Contractor (Jas Submitted Z399842 2028/1 Kes 11.12 202311 1111 4606 No 2023110 0 Ministry's Copy 0

> Appendix F Water Quality Results

CA14559-NOV23 R

98842.001, 4488 County Road 29

Prepared for

Cambium Inc.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Cambium Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	52 Hunter Street East	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9H 1G5. Canada		
Contact	Jeremy Tracey	Telephone	705-652-2143
Telephone	705-742-7900	Facsimile	705-652-6365
Facsimile	705-742-7907	Email	brad.moore@sgs.com
Email	jeremy.tracey@cambium-inc.com; file@cambium-inc.com; ESd	SGS Reference	CA14559-NOV23
Project	98842.001, 4488 County Road 29	Received	11/16/2023
Order Number		Approved	11/23/2023
Samples	Ground Water (1)	Report Number	CA14559-NOV23 R
		Date Reported	11/23/2023

COMMENTS

Note: Unionized ammonia calculated using lab results for pH and temperature.

NDOGHPC - No Data: Overgrown with HPC

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	-15
Legend	16
Annexes	17

SGS					FINAL REPORT	Client: Project Project Manager: Samplers:	CA14559-NOV23 R : Cambium Inc. : 98842.001, 4488 County Road 29 : Jeremy Tracey : Josh Munro
MATRIX: WATER			S	Sample Number	6 Test Well		
				Sample Matrix	Ground Water		
12 = ODWS_AO / WATER / Table 1 2 and 3 - J	Drinking Water - Reg O 169 03			Sample Date	16/11/2023		
Parameter	Units	RL	L1	L2	Result		
General Chemistry							
Alkalinity	mg/L as CaCO3	2			307		
Colour	TCU	3	5		4		
Conductivity	uS/cm	2			1070		
Temperature @ pH	°C	0			23.3		
Total Suspended Solids	mg/L	2			< 2		
Turbidity	NTU	0.10	5	1	0.30		
UV Transmittance	%T				96.8		
Dissolved Organic Carbon	mg/L	1	5		< 1		
Total Organic Carbon	mg/L	1			< 1		
Ammonia+Ammonium (N)	as N mg/L	0.04			0.48		
Organic Nitrogen	mg/L	0.05			0.12		
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.60		
Metals and Inorganics				'			
Sulphate	mg/L	0.04	500		13		
Nitrite (as N)	as N mg/L	0.003		1	< 0.003		
Nitrate (as N)	as N mg/L	0.006		10	< 0.006		
Nitrate + Nitrite (as N)	as N mg/L	0.006			< 0.006		
Hardness (dissolved)	mg/L as CaCO3	0.05			221		
Antimony (dissolved)	mg/L	0.0009		0.006	< 0.0009		
Arsenic (dissolved)	mg/L	0.0002		0.01	< 0.0002		
Barium (dissolved)	mg/L	0.00008		1	0.0673		
Beryllium (dissolved)	mg/L	0.000007			< 0.000007		

CA14559-NOV23 R

Client: Cambium Inc.

Project: 98842.001, 4488 County Road 29

Project Manager: Jeremy Tracey

Samplers: Josh Munro

		S	ample Number	6
			Sample Name	Test Well
			Sample Matrix	Ground Water
i9_03			Sample Date	16/11/2023
Units	RL	L1	L2	Result
mg/L	0.002		5	0.700
mg/L	0.000003		0.005	< 0.000003
mg/L	0.01			56.1
mg/L	0.00008		0.05	< 0.00008
mg/L	0.000004			0.000420
mg/L	0.0002	1		0.0048
mg/L	0.007	0.3		0.007
mg/L	0.00009		0.01	< 0.00009
mg/L	0.001			19.7
mg/L	0.00001	0.05		0.0143
mg/L	0.00004			0.00228
mg/L	0.0001			0.0022
mg/L	0.003			< 0.003
mg/L	0.009			5.85
mg/L	0.00004		0.05	0.00010
mg/L	0.00005			< 0.00005
mg/L	0.01	200	20	126
mg/L	0.00008			1.85
mg/L	0.000005			0.000020
mg/L	0.00006			< 0.00006
mg/L	0.00007			0.00017
mg/L	0.000002		0.02	0.000661
	 Imag/L mg/L 	Implie RL mg/L 0.002 mg/L 0.00003 mg/L 0.01 mg/L 0.00008 mg/L 0.00008 mg/L 0.00004 mg/L 0.00004 mg/L 0.0001 mg/L 0.0003 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.00005 mg/L 0.00005 mg/L 0.00005 mg/L 0.00008 mg/L 0.00008 mg/L 0.00005 mg/L 0.000065 mg/L 0.000065 mg/L 0.000065 mg/L 0.000066	Image: Pig_03 Image: Pig_03 Units RL L1 mg/L 0.002 1 mg/L 0.00003 1 mg/L 0.00008 1 mg/L 0.00004 1 mg/L 0.00004 1 mg/L 0.00002 1 mg/L 0.0001 0.03 mg/L 0.0001 0.055 mg/L 0.0001 0.055 mg/L 0.0001 0.055 mg/L 0.00004 1 mg/L 0.0001 0.055 mg/L 0.00004 1 mg/L 0.0001 200 mg/L 0.00005 1 mg/L 0.00005 1 mg/L 0.00005 1 mg/L 0.00005 1 mg/L 0.00006 1 mg/L 0.00007 1 mg/L 0.00007 1	Sample Number Sample Matrix Sample Date Sample Date Inits RL L1 L2 mg/L 0.002 5 mg/L 0.0003 0.005 mg/L 0.00004 0.01 mg/L 0.00002 1 mg/L 0.00004 0.01 mg/L 0.00002 1 mg/L 0.0001 0.01 mg/L 0.0001 0.01 mg/L 0.0001 0.05 mg/L 0.0004 0.05 mg/L 0.0004 0.05 mg/L 0.0005

-9999

-9999

-9999

-9999

-9999

none

mg/L

uS/cm

@ 4° C

pHs @ 4°C

0.93

564

1051

7.75

0.34

Ion Ratio

Total Dissolved Solids (calculated)

Conductivity (calculated)

Saturation pH 4°C

Langeliers Index 4° C

Microbiology				
Total Coliform	cfu/100mL	0	0	0
E. Coli	cfu/100mL	0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0		#NDOGHPC

SUS					FINAL REPORT	CA14559-NOV23 R
						Client: Cambium Inc.
						Project: 98842.001, 4488 County Road 29
						Project Manager: Jeremy Tracey
						Samplers: Josh Munro
MATRIX: WATER				Sample Number	6	
				Sample Name	Test Well	
L1 = ODWS_AO / WATER / Table 4 - Drinking Water - Reg	g O.169_03			Sample Matrix	Ground Water	
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	/ater - Reg 0.169_03			Sample Date	16/11/2023	
Parameter	Units	RL	L1	L2	Result	
Other (ORP)						
рН	No unit	0.05			8.09	
Chloride	mg/L	0.04	250		160	
Mercury (total)	mg/L	0.00001			< 0.00001	

CA14559-NOV23 R

EXCEEDANCE SUMMARY

	Parameter	Method	Units	Result	ODWS_AO / WATER / Table 4 - Drinking Water - Reg 0.169_03 L1	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03 L2
Tes	t Well					
	Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	126		20

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits .)
						(70)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0434-NOV23	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	'D AC Spike (%) Recovery —	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0170-NOV23	mg/L	0.04	0.05	0	10	96	90	110	102	75	125

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Duplic		licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0635-NOV23	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0635-NOV23	mg/L	0.003	<0.003	ND	20	102	90	110	98	75	125
Nitrate (as N)	DIO0635-NOV23	mg/L	0.006	<0.006	ND	20	100	90	110	99	75	125
Chloride	DIO0700-NOV23	mg/L	0.04	<0.04	0	20	99	90	110	103	75	125
Sulphate	DIO0700-NOV23	mg/L	0.04	<0.04	0	20	100	90	110	99	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	•]
	Reference			Blank	RPD	AC	Spike	Recover (۹	ry Limits 6)	Spike Recovery	Recover (୨	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0186-NOV23	mg/L	1	<1	ND	10	95	90	110	78	75	125
Total Organic Carbon	SKA0186-NOV23	mg/L	1	<1	ND	10	95	90	110	78	75	125

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike (%) Recovery		ry Limits	Spike	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0467-NOV23	TCU	3	< 3	0	10	95	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Boowony		6)	Recovery	(%	5)
						(%)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0434-NOV23	uS/cm	2	< 2	1	20	98	90	110	NA		

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%	.)
						(78)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0034-NOV23	mg/L	0.00001	< 0.00001	ND	20	89	80	120	96	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (9	∩y Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0162-NOV23	mg/L	0.00005	<0.00005	ND	20	102	90	110	84	70	130
Arsenic (dissolved)	EMS0162-NOV23	mg/L	0.0002	<0.0002	1	20	101	90	110	100	70	130
Barium (dissolved)	EMS0162-NOV23	mg/L	0.00008	<0.00008	1	20	101	90	110	100	70	130
Beryllium (dissolved)	EMS0162-NOV23	mg/L	0.000007	<0.000007	ND	20	100	90	110	97	70	130
Boron (dissolved)	EMS0162-NOV23	mg/L	0.002	<0.002	0	20	101	90	110	103	70	130
Calcium (dissolved)	EMS0162-NOV23	mg/L	0.01	<0.01	1	20	93	90	110	90	70	130
Cadmium (dissolved)	EMS0162-NOV23	mg/L	0.000003	<0.000003	ND	20	103	90	110	106	70	130
Cobalt (dissolved)	EMS0162-NOV23	mg/L	0.000004	<0.000004	6	20	99	90	110	95	70	130
Chromium (dissolved)	EMS0162-NOV23	mg/L	0.00008	<0.00008	0	20	102	90	110	108	70	130
Copper (dissolved)	EMS0162-NOV23	mg/L	0.0002	<0.0002	0	20	100	90	110	92	70	130
Iron (dissolved)	EMS0162-NOV23	mg/L	0.007	<0.007	ND	20	102	90	110	80	70	130
Potassium (dissolved)	EMS0162-NOV23	mg/L	0.009	<0.009	0	20	96	90	110	81	70	130
Magnesium (dissolved)	EMS0162-NOV23	mg/L	0.001	<0.001	2	20	94	90	110	88	70	130
Manganese (dissolved)	EMS0162-NOV23	mg/L	0.00001	<0.00001	1	20	101	90	110	102	70	130
Molybdenum (dissolved)	EMS0162-NOV23	mg/L	0.00004	<0.00004	1	20	100	90	110	84	70	130
Sodium (dissolved)	EMS0162-NOV23	mg/L	0.01	<0.01	2	20	91	90	110	90	70	130
Nickel (dissolved)	EMS0162-NOV23	mg/L	0.0001	<0.0001	5	20	99	90	110	97	70	130
Lead (dissolved)	EMS0162-NOV23	mg/L	0.00009	<0.00009	ND	20	102	90	110	101	70	130
Phosphorus (dissolved)	EMS0162-NOV23	mg/L	0.003	<0.003	0	20	93	90	110	NV	70	130
Antimony (dissolved)	EMS0162-NOV23	mg/L	0.0009	<0.0009	2	20	107	90	110	71	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method Duplicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover (%	y Limits ७)
						(%)	(%)	Low	High	(%)	Low	High
Selenium (dissolved)	EMS0162-NOV23	mg/L	0.00004	<0.00004	4	20	104	90	110	86	70	130
Tin (dissolved)	EMS0162-NOV23	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (dissolved)	EMS0162-NOV23	mg/L	0.00008	<0.00008	0	20	99	90	110	97	70	130
Titanium (dissolved)	EMS0162-NOV23	mg/L	0.00007	<0.00005	7	20	96	90	110	NV	70	130
Thallium (dissolved)	EMS0162-NOV23	mg/L	0.000005	<0.000005	ND	20	94	90	110	95	70	130
Uranium (dissolved)	EMS0162-NOV23	mg/L	0.000002	<0.000002	8	20	99	90	110	86	70	130
Vanadium (dissolved)	EMS0162-NOV23	mg/L	0.00001	<0.00001	0	20	102	90	110	81	70	130
Zinc (dissolved)	EMS0162-NOV23	mg/L	0.002	<0.002	ND	20	102	90	110	111	70	130

QC SUMMARY

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recovery (%	/ Limits)
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9304-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Heterotrophic Plate Count (HPC)	BAC9304-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9304-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recoverv	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0434-NOV23	No unit	0.05	NA	1	100				NA		

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		Matrix Spike / F		Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits	Spike	Recover	y Limits		
						(%)	Recovery	(76)		(%)		(%)	(%	p)
							(%)	Low	High	(70)	Low	High		
Total Suspended Solids	EWL0444-NOV23	mg/L	2	< 2	2	10	93	90	110	NA				

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits		Spike	Recover	y Limits		
						(%)	Recovery	(%)		Recovery (%) Recovery		Recovery	(%	6)
							(%)	Low	High	(%)	Low	High		
Total Kjeldahl Nitrogen (N)	SKA0187-NOV23	mg/L	0.05	<0.05	1	10	106	90	110	107	75	125		

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0440-NOV23	NTU	0.10	< 0.10	10	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

↑ Reporting limit raised.

↓ Reporting limit lowered.

- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

BRelinquished by (NAME): Uash Mund	n Sampled By (NAME): Jush Munro	ne Observations/Comments/Special Instructions りしゃうて のかいそ リみんや - ワーマ			C-41	045	-AD7	2-57	26418 ω	BD3:	3F40 1 Test well 11-16-23 16:30	SAMPLE IDENTIFICATION SAMPLED SAMPLED	RECORD OF SITE CONDITION (RSC) YES NO	Soil Volume <a> <a> <a> <a> <a>	Table Appx. MISA	Table 2 Ind/Com Coarse PWCO MMEK	Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TA	O.Reg 153/04 O.Reg 406/19 Other Regulations:	REGULATIONS	Email:	Fax: Phone:	Phone: 705 - 742 - 7100	Peterbereugh, ON Address:	Address: 194 Sughin Street, Contact:	Contact: Jeremy Trocky Company:	Company: Combium - Inc. (S) (same as Report Informat	REPORT INFORMATION INVOICE INFOR	Received Date: NOV / 1 6 (2023 (mm/dd/yy) Custody Seal I Received Time: / S: 2 (nr: min) Custody Seal I	Received By (s
Signature:	Signature:	notices, fluori									16 GW	# OF BOTTLES MATRD		note		Municipality:	T) Sanitary	Sewer By-Law:								ion)	IMATION	ntact: Yes Vo	ionature):
1M Date: 11 /	ل Date: <u>۱۱ /</u>	e, methone, Jommin + Lightin									X	Field Filtered Metals & Inon Incl GYJ, CN, Hg pH, (B(- (C), Na-water) Full Metals S ICP metals plus B(HWS-4 ICP Metals on Gr, Co, Cu, Pb, Mo, NI, Se, Ac PAHS only SVOCS all Incl PAHS, ABNS, CPS PCBS Total F1-F4 + BTEX F1-F4 only no BTEX VOCS all Incl BTEX BTEX only Pesticides Organochlorine or spec	(Y/N gai wws), E wite coll onf ly s , TI, U, V (fy oth Q Q Q	er	S , CrVI Ba,Be	1) ,B,Cd,]	M & I SVOC PCB PHC VOC Pest	ANALYSIS REQUESTE	Specify Due Date: *NOTE: DRINKING (POTABL	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PR	RUSH TAT (Additional Charges May Apply): 1 Day 2 Days	Regular TAT (5-7days)	TURNAROUND TIME (1	Project #: * 18842-001	Quotation # 2022 ST3		Cooling Agent Present: Yes I No I Type: 100	vratory Information Section - Lab use only
16123 (mm/dd/yy)	16123 (mm/dd/yy)											* Placese 0 Flooride, r Tomin + L Sewer Use: Specifypkg: Water Characte General Ex	rizat	+ 	Pk	} ₩ 9	enelit S	Other (please specify) S	8	LE) WATER SAMPLES FOR HUMAN	RIOR TO SUBMISSION	s 🗍 3 Days 🗍 4 Days	TAT's are quoted in business days (t Samples received after 6pm or on we	TAT) REQUIRED	Site Location/ID: 4488 (P.O.#		LABLIN	
Yellow & White Copy - SGS	Pink Copy - Client											Accession and Ac		TYOC TWO COMMENTS.	Imetats Ong	tests tests	pecify Specify	PLP TCLP		OF CUSTODY			exclude statutory holidays & weekends). Rekends: TAT begins next business day		conty need 29		21	15#Cal4559-1101	

Request for Laboratory Services and CHAIN OF CUSTODY

No: 037647

Hydrogeological Assessment and Sewage System Design– 4488 County Road 29, Douro-Dummer, Ontario Kawartha Utility Services Ltd Cambium Reference: 18842-001 March 8, 2024

Appendix G MECP Well Records

Water Well Records Summary Report Produced by Cambium Inc. using MOECP Water Well Information System (WWIS)

All units in meters unless otherwise specified

Well ID: 5100691 Construction Date: 1953-09-01	Easting: 718558 Northing: 4925494	UTM Zone 17 Positional Accuracy: unknown UTM
	Well Depth:11.3Well Diameter (cm):15.2Water First Found:10.4Static Level:3	Water KindFRESHPump Rate (LPM):14Final StatusWater SupplyRecommended Pump Rate:Primary Water Use:DomesticPumping Duration (h:m):2:0
	Layer: Driller's Description:	Top: Bottom:
	1 TOPSOIL	0 3.05
	2 LIMESTONE	3.05 11.3
Well ID: 5100692 Construction Date: 1967-10-16	Easting: 717991 Northing: 4925099	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:24.4Well Diameter (cm):15.2Water First Found:5.18Static Level:4	Water KindFRESHPump Rate (LPM):9Final StatusWater SupplyRecommended Pump Rate:9Primary Water Use:DomesticPumping Duration (h:m):2:0
	Layer: Driller's Description:	Top: Bottom:
	1 TOPSOIL	0 0.30
	2 CLAY	0.30 2.74
	3 LIMESTONE	2.74 24.4
Well ID: 5100693	Easting: 718442 Northing: 4925571	UTM Zone 17 Positional Accuracy: unknown UTM
	-	
	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2	Water KindFRESHPump Rate (LPM):14Final StatusWater SupplyRecommended Pump Rate:Primary Water Use:DomesticPumping Duration (h:m):2:0
	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:	Water Kind FRESH Pump Rate (LPM): 14 Final Status Water Supply Recommended Pump Rate: Primary Water Use: Domestic Pumping Duration (h:m): 2:0
	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:1CLAY	Water KindFRESHPump Rate (LPM):14Final StatusWater SupplyRecommended Pump Rate:14Primary Water Use:DomesticPumping Duration (h:m):2:0Top:Bottom:152
	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:1CLAY2LIMESTONE	Water Kind Final StatusFRESH Water Supply DomesticPump Rate (LPM):14 Recommended Pump Rate: Pumping Duration (h:m):2:0Top:Bottom:01.521.5215.9
Well ID: 5100694 Construction Date: 1956-01-13	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:1CLAY2LIMESTONEEasting:718637Northing:4925603	Water Kind FRESH Pump Rate (LPM): 14 Final Status Water Supply Pumping Duration (h:m): 2:0 Top: Bottom: 2:0 1.52 15.9 15.9
Well ID: 5100694 Construction Date: 1956-01-13	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:1CLAY2LIMESTONEEasting:718637Northing:4925603Well Depth:6.71Well Diameter (cm):15.2Water First Found:6.71Static Level:1	Water Kind Final StatusFRESH Water Supply DomesticPump Rate (LPM):14 Recommended Pump Rate: Pumping Duration (h:m):14 2:0Top:Bottom: 01.521.522:0I.5215.9Vater Supply Water Supply Primary Water Use:Pump Rate (LPM):36 Recommended Pump Rate: Pumping Duration (h:m):36 2:0Water Kind
Well ID: 5100694 Construction Date: 1956-01-13	Well Depth: 15.9 Well Diameter (cm): 20.3 Water First Found: 15.9 Static Level: 2 Layer: Driller's Description: 1 CLAY 2 LIMESTONE Easting: 718637 Northing: 4925603 Well Depth: 6.71 Well Diameter (cm): 15.2 Water First Found: 6.71 Static Level: 1 Layer: Driller's Description:	Water Kind Final Status Primary Water Use:FRESH Water Supply DomesticPump Rate (LPM):14 Recommended Pump Rate: Pumping Duration (h:m):14 2:0Top:Bottom:DomesticPumping Duration (h:m):2:01.5215.915.9Pump Rate (LPM):36 Recommended Pump Rate: Pumping Duration (h:m):36 Recommended Pump Rate: Pumping Duration (h:m):36 2:0Water Kind Final Status Primary Water Use:FRESH CommericalPump Rate (LPM):36 Recommended Pump Rate: Pumping Duration (h:m):32:0Top:Bottom:FRESH SupplyPump Rate (LPM):2:0
Well ID: 5100694 Construction Date: 1956-01-13	Well Depth:15.9Well Diameter (cm):20.3Water First Found:15.9Static Level:2Layer:Driller's Description:1CLAY2LIMESTONEEasting:718637Northing:4925603Well Depth:6.71Well Diameter (cm):15.2Water First Found:6.71Static Level:1Layer:Driller's Description:1TOPSOIL	Water Kind Final StatusFRESH Water Supply DomesticPump Rate (LPM):14
Well ID: 5100694 Construction Date: 1956-01-13	Well Depth: 15.9 Well Diameter (cm): 20.3 Water First Found: 15.9 Static Level: 2 Layer: Driller's Description: 1 CLAY 2 LIMESTONE Easting: 718637 Northing: 4925603 Well Depth: 6.71 Well Diameter (cm): 15.2 Water First Found: 6.71 Static Level: 1 Layer: Driller's Description: 1 TOPSOIL 2 SHALE	Water Kind Final Status Primary Water Use:FRESH Water Supply DomesticPump Rate (LPM):14 Recommended Pump Rate: Pumping Duration (h:m):14 2:0Top:Bottom: 01.521.521.521.591.521.591.521.59UTM Zone 17 Positional Accuracy: unknown UTMPump Rate (LPM):36 Recommended Pump Rate: Pump Rate (LPM):36 Recommended Pump Rate: Pumping Duration (h:m):2:0Top:Bottom: 00.610.612.4414 Recommended Pump Rate: Pumping Duration (h:m):2:0

Well ID: 5100697 Construction Date: 1961-06-12	Easting: 718 Northing: 49	188 925429	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	15.5 er (cm): 15.2 found: 10.7 4	Water Kind Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	45 45 2 : 0
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1 2	TOPSOIL	0 0.61	0.61 15.5			
Well ID: 5100701 Construction Date: 1964-08-05	Easting: 718 Northing: 49	269 925486	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamet Water First F Static Level:	11.3 er (cm): 15.2 found: 8.23 4	Water King Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	18 18 1:30
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.61			
	2	LIMESTONE	0.61	2.74			
	3	LIMESTONE	2.74	11.3			
Well ID: 5100702 Construction Date: 1964-08-05	Easting: 718 Northing: 49	257 925470	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	13.4 er (cm): 15.2 found: 9.14 4	Water King Final Statu Primary W	d Is 'ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	14 14 1:30
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	1.83			
	3	SHALE	1.83	2.74			
	4	LIMESTONE	2.74	13.4			
Well ID: 5100703 Construction Date: 1965-02-23	Easting: 718 Northing: 49	478 925572	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	16.5 er (cm): 15.2 found: 13.7 5	Water Kind Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	5 18 0:30
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	1.83			
	2	LIMESTONE	1.83	5.79			
	3	LIMESTONE	5.79	16.5			

Well ID: 5100704 Construction Date: 1967-01-31	Easting: 718 Northing: 49	425 925592	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	10.7 er (cm): 15.2 ound: 5.18 2	Water Kind Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	68 23 3:0
	Layer: Dril 1	ler's Description: TOPSOIL	Тор: 0	Bottom: 0.61			
	2	CLAY	0.61	5.18			
	3	SHALE	5.18	5.49			
	4	LIMESTONE	5.49	10.7			
Well ID: 5100705 Construction Date: 1968-01-22	Easting: 717 Northing: 49	825 925526	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	3.96 er (cm): 15.2 ound: 3.96 2	Water Kind Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	136 23 2:0
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.91			
	2	SHALE	0.91	1.52			
	3	LIMESTONE	1.52	3.96			
Well ID: 5100724 Construction Date: 1965-01-21	Easting: 717 Northing: 49	836)24542	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth: Well Diamete Water First F Static Level:	21.3 er (cm): 15.2 ound: 13.7 8	Water Kind Final Statu Primary W	d Is 'ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	9 9 2 : 0
	Layer: Dril	ler's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	9.14			
	3	LIMESTONE	9.14	21.3			
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49	086 024628	UTM Zone Positional	17 Accuracy:	unknown UTM		
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49 Well Depth: Well Diamet Water First F Static Level:	086 124628 er (cm): ound: 19.8 1	UTM Zone Positional Water Kine Final Statu Primary W	17 Accuracy: d Is Vater Use:	unknown UTM FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	36 1:0
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49 Well Depth: Well Diamet Water First F Static Level: Layer: Dril	086 124628 er (cm): ound: 19.8 1 ler's Description:	UTM Zone Positional Water Kind Final Statu Primary W Top:	17 Accuracy: d s vater Use: Bottom:	unknown UTM FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	36 1:0
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49 Well Depth: Well Diamete Water First F Static Level: Layer: Dril	086 124628 er (cm): ound: 19.8 1 ler's Description: PREVIOUSLY DUG	UTM Zone Positional Water Kine Final Statu Primary W Top: 0	17 Accuracy: d s /ater Use: Bottom: 3.05	unknown UTM FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	36 1:0
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49 Well Depth: Well Diamete Water First F Static Level: Layer: Dril 1 1	086 124628 er (cm): ound: 19.8 1 ler's Description: PREVIOUSLY DUG	UTM Zone Positional Water Kine Final Statu Primary W Top: 0 0	17 Accuracy: d Is Vater Use: Bottom: 3.05 3.05	unknown UTM FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	36 1:0
Well ID: 5100725 Construction Date: 1953-01-09	Easting: 718 Northing: 49 Well Depth: Well Diamete Water First F Static Level: Layer: Dril 1 1 1 1	086 124628 19.8 er (cm): ound: 19.8 1 ler's Description: PREVIOUSLY DUG PREVIOUSLY DUG LIMESTONE	UTM Zone Positional Water Kine Final Statu Primary W Top: 0 0 3.05	17 Accuracy: d s Vater Use: Bottom: 3.05 3.05 19.8	unknown UTM FRESH Water Supply Livestock	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	36 1:0

Well ID: 5100726 Construction Date: 1962-07-11	Easting: 72 Northing:	18063 4925235	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth Well Diamo Water First Static Leve	n: 11.6 eter (cm): 15.2 : Found: 11.6 l: 7	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	45 36 2 : 0
	Layer: D	riller's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	10.7			
	3	GRAVEL	10.7	11.6			
Well ID: 5100727 Construction Date: 1963-10-17	Easting: 72 Northing:	18250 4925360	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth Well Diame Water First Static Leve	n: 18 eter (cm): 15.2 : Found: 16.8 l: 7	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 14 1:0
	Layer: D	riller's Description:	Тор:	Bottom:			
	1	CLAY	0	10.1			
	2	LIMESTONE	10.1	18			
Well ID: 5100728 Construction Date: 1967-01-31	Easting: 72 Northing:	18259 4925340	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well Depth Well Diame Water First Static Leve	n: 24.4 eter (cm): : Found: 22.9 l: 6	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	32 18 2:0
	Layer: D	riller's Description:	Тор:	Bottom:			
	1	PREV. DRILLED	0	18			
	1	PREV. DRILLED	0	18			
	2	LIMESTONE	18	24.4			
	2	LIMESTONE	18	24.4			
Well ID: 5100729 Construction Date: 1954-02-09	Easting: 72 Northing:	17772 4925530	UTM Zone Positional	17 Accuracy:	unknown UTM		
	Well Depth Well Diamo Water First Static Leve	a: 7.32 eter (cm): 15.2 t Found: 7.32 l: 2	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	18 2:0
	Layer: D	riller's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	3.05			
	3	LIMESTONE	3.05	7.32			

Well ID: 5100730 Construction Date: 1964-10-19	Easting: 717573 Northing: 4925260	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:11.6Well Diameter (cm):15.2Water First Found:10.7Static Level:2	Water KindFRESHPump Rate (LPM):27Final StatusWater SupplyRecommended Pump Rate:14Primary Water Use:DomesticPumping Duration (h:m):0:30
	Layer: Driller's Description	: Top: Bottom:
	1 CLAY	0 3.05
	2 LIMESTONE	3.05 5.18
	3 LIMESTONE	5.18 11.6
Well ID: 5101399 Construction Date: 1963-01-08	Easting: 717851 Northing: 4924744	UTM Zone 17 Positional Accuracy: unknown UTM
	Well Depth:18Well Diameter (cm):15.2Water First Found:11.6Static Level:8	Water KindFRESHPump Rate (LPM):23Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):1:0
	Layer: Driller's Description	: Top: Bottom:
	1 PREVIOUSLY DUC	5 0 11.6
	2 LIMESTONE	11.6 18
Well ID: 5104520 Construction Date: 1969-01-21	Easting: 718335 Northing: 4925513	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:27.1Well Diameter (cm):15.2Water First Found:26.5Static Level:4	Water KindSULPHURPump Rate (LPM):14Final StatusWater SupplyRecommended Pump Rate:14Primary Water Use:DomesticPumping Duration (h:m):1:0
	Layer: Driller's Description	: Top: Bottom:
	1 TOPSOIL	0 0.61
	2 CLAY	0.61 2.44
	3 LIMESTONE	2.44 27.1
Well ID: 5104831 Construction Date: 1970-01-29	Easting: 718065 Northing: 4925573	UTM Zone 17 Positional Accuracy: margin of error : 30 m - 100 m
	Well Depth: 13.1 Well Diameter (cm): 15.2 Water First Found: 10.7 Static Level: 2	Water KindFRESHPump Rate (LPM):5Final StatusWater SupplyRecommended Pump Rate:5Primary Water Use:DomesticPumping Duration (h:m):1:0
	Layer: Driller's Description	: Top: Bottom:
	1 TOPSOIL	0 0.30
	2 CLAY	0.30 3.05
	3 CLAY	3.05 4.57
	4 LIMESTONE	4.57 13.1

Well ID: 5104832 Construction Date: 1970-01-29	Easting: 2 Northing	717965 : 4925523	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m	
	Well Dept Well Dian Water Fir Static Lev	th: 11.6 neter (cm): 15.2 st Found: rel: 2	Water Kin Final Statu Primary W	d ıs /ater Use:	Not stated Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	9 9 2:0
	Layer: I	Driller's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	3.05			
	3	CLAY	3.05	4.88			
	4	LIMESTONE	4.88	11.6			
Well ID: 5104878 Construction Date: 1970-02-02	Easting:	718065 : 4925323	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m	
	Well Dept Well Dian Water Fir Static Lev	th: 12.2 neter (cm): 15.2 st Found: 12.2 el: 4	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	14 14 2:0
	Layer: I	Driller's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	0.30			
	2	CLAY	0.30	2.44			
	3	GRAVEL	2.44	3.35			
	4	LIMESTONE	3.35	12.2			
				17			
Construction Date: 1970-10-15	Easting: Northing:	717835 : 4925473	UTM Zone Positional	Accuracy:	margin of error :	30 m - 100 m	
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 el: 4	UTM Zone Positional Water Kin Final Statu Primary W	Accuracy: d us /ater Use:	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4 : 0
Construction Date: 1970-10-15	Easting: Northing: Well Dep Well Dian Water Fir Static Lev Layer:	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description:	UTM Zone Positional Water Kin Final Statu Primary W Top:	Accuracy: d Is /ater Use: Bottom:	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4 : 0
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: I	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL	UTM Zone Positional Water Kin Final Statu Primary W Top: 0	Accuracy: d is /ater Use: Bottom: 0.61	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4 : 0
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0	Accuracy: d Is Vater Use: Bottom: 0.61 0.61	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0
Construction Date: 1970-10-15	Easting: A Northing: Well Dep Well Dian Water Fir Static Lev Layer: 1 1 1 2	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61	Accuracy: d is /ater Use: 0.61 0.61 2.13	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 1 2 2	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 el: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0 0.61 0.61	Accuracy: d is /ater Use: 0.61 0.61 2.13 2.13	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 1 2 2 2 3	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0 0.61 0.61 2.13	Accuracy: d is /ater Use: 0.61 0.61 2.13 2.13 7.62	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0
Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 1 2 2 3 3 3	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE	VTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 0.61 2.13 2.13	Accuracy: d ss /ater Use: 0.61 0.61 2.13 2.13 7.62 7.62	margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0
Well ID: 5105215 Construction Date: 1970-10-15 Well ID: 5105257 Construction Date: 1970-11-23	Easting: Northing: Well Depi Well Dian Water Fir Static Lev Layer: 1 1 2 2 3 3 3 Easting: 7	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE LIMESTONE 2718165 : 4925393	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 0.61 2.13 2.13 UTM Zone Positional	Accuracy: d is /ater Use: 0.61 0.61 2.13 2.13 7.62 7.62 7.62 17 Accuracy:	margin of error : FRESH Water Supply Domestic margin of error :	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): 30 m - 100 m	27 27 4:0
Well ID: 5105215 Construction Date: 1970-10-15 Well ID: 5105257 Construction Date: 1970-11-23	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 2 2 3 3 3 Easting: 7 Northing: Well Dept Well Dian Water Fir Static Lev	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE LIMESTONE 18165 : 4925393 th: 22.9 neter (cm): st Found: 22.3 rel: 6	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 0.61 2.13 2.13 UTM Zone Positional Water Kin Final Statu Primary W	Accuracy: d s /ater Use: Bottom: 0.61 0.61 2.13 2.13 7.62 7.62 17 Accuracy: d s /ater Use:	margin of error : FRESH Water Supply Domestic margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): 30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0 9 9 3:0
Well ID: 5105257 Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 2 2 3 3 5 Easting: 7 Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE LIMESTONE CONSTRUCTIONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE CONSTRUCTIONE CONSTRUCT	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 0.61 2.13 2.13 UTM Zone Positional Water Kin Final Statu Primary W	Accuracy: Accuracy: d ss /ater Use: 0.61 0.61 2.13 2.13 7.62 7.62 7.62 2.17 Accuracy: d ss /ater Use: Bottom: Source (Stress)	margin of error : FRESH Water Supply Domestic margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): 30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0 9 9 3:0
Well ID: 5105257 Construction Date: 1970-10-15	Easting: Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1 2 2 3 3 3 Easting: 1 Northing: Well Dept Well Dian Water Fir Static Lev Layer: 1 1	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 el: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE LIMESTONE 18165 : 4925393 th: 22.9 neter (cm): st Found: 22.3 el: 6 Driller's Description: TOPSOIL	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 2.13 2.13 UTM Zone Positional Water Kin Final Statu Primary W	Accuracy: Accuracy: d s /ater Use: 0.61 0.61 0.61 2.13 2.13 7.62 7.62 7.62 17 Accuracy: d s /ater Use: Bottom: 0.30	margin of error : FRESH Water Supply Domestic margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): 30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0 9 9 3:0
Well ID: 5105215 Construction Date: 1970-10-15 Well ID: 5105257 Construction Date: 1970-11-23	Easting: Northing: Well Depi Well Dian Water Fir Static Lev Layer: 1 1 2 2 3 3 Easting: Well Depi Well Dian Water Fir Static Lev Layer: 1 1 1 1 1 1 2 1	717835 : 4925473 th: 7.62 neter (cm): st Found: 7.01 rel: 4 Driller's Description: TOPSOIL TOPSOIL MEDIUM SAND MEDIUM SAND LIMESTONE LIMESTONE LIMESTONE 1718165 : 4925393 th: 22.9 neter (cm): st Found: 22.3 rel: 6 Driller's Description: TOPSOIL TOPSOIL	UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0 0.61 0.61 2.13 2.13 UTM Zone Positional Water Kin Final Statu Primary W Top: 0 0	Accuracy: Accuracy: d ss /ater Use: 0.61 0.61 2.13 2.13 7.62 7.62 7.62 17 Accuracy: d ss /ater Use: Bottom: 0.30 0.30	margin of error : FRESH Water Supply Domestic margin of error : FRESH Water Supply Domestic	30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): 30 m - 100 m Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	27 27 4:0 9 9 3:0

usign Envelope ID: 6166FB0C-41	E7-40A5-AD	072-576418D33F4C	0	0 30		
	2		0.30	1.83		
	2	CLAY	0.30	1.05		
	2	CLAY	0.30	1.00		
	2	CLAY	0.30	1.00		
	2		1 92	21.05		
	с С	LIMESTONE	1.05	21.5		
	с С	LIMESTONE	1.05	21.5		
	2		1.05	21.5		
	5	LIMESTONE	21.05	21.5		
	4	LIMESTONE	21.5	22.9		
	4		21.3	22.9		
	4		21.3	22.9		
	4	LIIVIESTOINE	21.3	22.9		
Well ID: 5105321 Construction Date: 1971-02-03	Easting: Northing	717845 g: 4925473	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
	Well Dep Well Dia Water Fi Static Le	oth: 15.2 meter (cm): 15.2 irst Found: 9.75 vel: 5	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):14Recommended Pump Rate:14Pumping Duration (h:m):3:0
	Layer:	Driller's Description:	Тор:	Bottom:		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	2	CLAY	0.30	3.05		
	2	CLAY	0.30	3.05		
	3	CLAY	3.05	5.18		
	3	CLAY	3.05	5.18		
	4	GRAVEL	5.18	5.49		
	4	GRAVEL	5.18	5.49		
	5	LIMESTONE	5.49	15.2		
	5	LIMESTONE	5.49	15.2		
Well ID: 5105995 Construction Date: 1972-06-05	Easting: Northing	718365 g: 4925548	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
	Well Der Well Dia Water Fi	oth: 14.6 meter (cm): 15.2 irst Found: 12.8	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):18Recommended Pump Rate:18Pumping Duration (h:m):2:0
	Static Le	vel: 5				
	Static Le Layer:	vel: 5 Driller's Description:	Тор:	Bottom:		
	Static Le Layer: 1	vel: 5 Driller's Description: PREV. DRILLED	Тор: 0	Bottom: 12.2		

Well ID: 5106008 Construction Date: 1972-06-19	Easting: 7 Northing:	17865 4924823	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
	Well Dept Well Diam Water Firs Static Leve	h: 22.9 eter (cm): 15.2 t Found: 22.9 el: 8	Water Kind Final Statu Primary W	d Is 'ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):9Recommended Pump Rate:9Pumping Duration (h:m):2:30
	Layer: D	viller's Description:	Тор:	Bottom:		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	1	TOPSOIL	0	0.30		
	2	CLAY	0.30	8.23		
	2	CLAY	0.30	8.23		
	2	CLAY	0.30	8.23		
	2	CLAY	0.30	8.23		
	2	CLAY	0.30	8.23		
	2	CLAY	0.30	8.23		
	3	LIMESTONE	8.23	22.9		
	3	LIMESTONE	8.23	22.9		
	3	LIMESTONE	8.23	22.9		
	3	LIMESTONE	8.23	22.9		
	3	LIMESTONE	8.23	22.9		
	3	LIMESTONE	8.23	22.9		
Well ID: 5106738 Construction Date: 1974-01-23	Easting: 7 Northing:	18044 4925329	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
	Well Dept Well Diam Water Firs Static Leve	h: 32 eter (cm): 15.2 t Found: 19.8 el: 12	Water Kind Final Statu Primary W	d Is /ater Use:	FRESH Water Supply Commerical	Pump Rate (LPM):5Recommended Pump Rate:5Pumping Duration (h:m):3:0
	Layer: D	oriller's Description:	Тор:	Bottom:		
	1	FILL	0	0.30		
	2	CLAY	0.30	1.52		
	3	CLAY	1.52	2.44		
	4	LIMESTONE	2.44	32		
Well ID: 5106760 Construction Date: 1974-01-23	Easting: 7 Northing:	17862 4924721	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
	Well Dept Well Diam Water Firs Static Leve	h: 12.5 eter (cm): 15.2 t Found: 12.5 el: 5	Water Kind Final Statu Primary W	d Is Vater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):36Recommended Pump Rate:36Pumping Duration (h:m):2:0
	Layer: D	riller's Description: TOPSOIL	тор: 0	Bottom: 0.61		

	2	CLAY	0.61	12.2			
	3	LIMESTONE	12.2	12.5			
Well ID: 5107058 Construction Date: 1974-09-11	Easting: Northin	: 718143 g: 4925471	UTM Zone 17 Positional Accuracy: margin of error : 30 m - 100 m				
	Well De Well Dia Water F Static Le	pth: 22.6 ameter (cm): 15.2 iirst Found: 22.6 evel: 6	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):5Recommended Pump Rate:5Pumping Duration (h:m):3:0	
	Layer:	Driller's Description:	Тор:	Bottom:			
	1	SAND	0	1.22			
	2	CLAY	1.22	2.44			
	3	CLAY	2.44	3.96			
	4	LIMESTONE	3.96	22.6			
Well ID: 5107253 Construction Date: 1975-01-13	Easting: Northin	: 717905 g: 4924865	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m	
	Well De Well Dia Water F Static Le	pth: 17.4 ameter (cm): 15.2 iirst Found: 17.1 evel: 12	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):68Recommended Pump Rate:45Pumping Duration (h:m):1:30	
	Layer:	Driller's Description:	Тор:	Bottom:			
	1	TOPSOIL	0	1.52			
	2	CLAY	1.52	6.40			
	3	LIMESTONE	6.40	17.4			
Well ID: 5107724 Construction Date: 1975-12-09	Easting: Northin	: 718215 g: 4925423	UTM Zone Positional	17 Accuracy:	margin of error :	100 m - 300 m	
	Well De Well Dia Water F Static Le	pth: 19.5 ameter (cm): 15.2 irst Found: 18.6 evel: 10	Water Kin Final Statı Primary W	d ıs /ater Use:	FRESH Water Supply Domestic	Pump Rate (LPM):9Recommended Pump Rate:9Pumping Duration (h:m):3 : 30	
	Layer:	Driller's Description:	Тор:	Bottom:			
	1	PREV. DRILLED	0	14.9			
	2	LIMESTONE	14.9	19.5			
Well ID: 5108321 Construction Date: 1977-01-18	Easting: 718065 Northing: 4924973		UTM Zone 17 Positional Accuracy:		margin of error :	100 m - 300 m	
	Well De Well Dia Water F Static Le	pth: 20.4 ameter (cm): 15.2 iirst Found: 18.3 evel: 8	Water Kin Final Statu Primary W	d ıs /ater Use:	FRESH Water Supply Industrial	Pump Rate (LPM):18Recommended Pump Rate:18Pumping Duration (h:m):1:40	
	Layer:	Driller's Description:	Тор:	Bottom:			
	4	a	0	2.05			
	1	CLAY	0	3.05			

Well ID: 5108705 Construction Date: 1977-11-16	Easting: 718265 Northing: 4925323	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:18.9Well Diameter (cm):15.2Water First Found:17.7Static Level:8	Water KindNot statedPump Rate (LPM):91Final StatusWater SupplyRecommended Pump Rate:45Primary Water Use:DomesticPumping Duration (h:m):1:40
	Layer: Driller's Description	: Top: Bottom:
	1 CLAY	0 4.57
	2 LIMESTONE	4.57 18.9
Well ID: 5109527 Construction Date: 1979-09-17	Easting: 718365 Northing: 4925523	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:26.5Well Diameter (cm):15.2Water First Found:25.9Static Level:11	Water KindNot statedPump Rate (LPM):Final StatusWater SupplyRecommended Pump Rate: 14Primary Water Use:DomesticPumping Duration (h:m): 1:40
	Layer: Driller's Description	: Top: Bottom:
	1 CLAY	0 1.22
	2 SHALE	1.22 3.35
	3 LIMESTONE	3.35 26.5
Well ID: 5109566 Construction Date: 1979-10-09	Easting: 717815 Northing: 4925323	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:6.71Well Diameter (cm):15.2Water First Found:6.40Static Level:3	Water KindFRESHPump Rate (LPM):32Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):2:30
	Layer: Driller's Description	: Top: Bottom:
	1 TOPSOIL	0 0.61
	2 GRAVEL	0.61 6.40
	3 LIMESTONE	6.40 6.71
Well ID: 5109788 Construction Date: 1980-06-12	Easting: 717565 Northing: 4925273	UTM Zone 17 Positional Accuracy: margin of error : 100 m - 300 m
	Well Depth:6.1Well Diameter (cm):15.2Water First Found:5.79Static Level:2	Water KindFRESHPump Rate (LPM):45Final StatusWater SupplyRecommended Pump Rate:45Primary Water Use:DomesticPumping Duration (h:m):2:30
	Layer: Driller's Description	: Top: Bottom:
	1 GRAVEL	0 5.79
	2 SHALE	5.79 6.1
Well ID: 5111247 Construction Date: 1984-12-03	Easting: 717738 Northing: 4925407	UTM Zone 17 Positional Accuracy: unknown UTM
	Well Depth:6.1Well Diameter (cm):15.2Water First Found:6.1Static Level:0	Water KindFRESHPump Rate (LPM):45Final StatusWater SupplyRecommended Pump Rate:45Primary Water Use:DomesticPumping Duration (h:m):2 : 30
	Layer: Driller's Description	: Top: Bottom:

	1	SAND	0	0.91		
	2	CLAY	0.91	5.18		
	3	LIMESTONE	5.18	5.49		
	4	LIMESTONE	5.49	6.1		
Well ID: 5112365 Construction Date: 1987-06-24	Easting: 7 Northing:	18575 4925257	UTM Zone Positional	17 Accuracy:	unknown UTM	
	Well Deptl Well Diam Water Firs Static Leve	h: 36.6 eter (cm): t Found: 36.6 el: 8	Water Kin Final Statu Primary W	d ıs /ater Use:	Not stated Water Supply Domestic	Pump Rate (LPM):14Recommended Pump Rate:14Pumping Duration (h:m):2 : 0
	Layer: D	riller's Description:	Тор:	Bottom:		
	1	PREVIOUSLY DUG	0	24.4		
	2	LIMESTONE	24.4	36.6		
Well ID: 5120834 Construction Date: 2006-09-19	Easting: 7 Northing:	18183 4925325	UTM Zone Positional	17 Accuracy:	margin of error :	10 - 30 m
	Well Deptl Well Diam Water Firs Static Leve	h: eter (cm): t Found: tl:	Water Kin Final Statı Primary W	d ıs /ater Use:		Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):
	Layer: D	riller's Description:	Тор:	Bottom:		
Well ID: 7040611 Construction Date: 2007-02-05	Easting: 717868 Northing: 4925491		UTM Zone Positional	17 Accuracy:	margin of error :	10 - 30 m
	Well Deptl Well Diam Water Firs Static Leve	h: 12.2 eter (cm): 15.6 t Found: 6.1 el: 3	Water Kin Final Statı Primary W	d ıs /ater Use:	Water Supply Domestic	Pump Rate (LPM):64Recommended Pump Rate:Pumping Duration (h:m):1:0
	Layer: D	riller's Description:	Тор:	Bottom:		
	1	CLAY	0	1.83		
	2	LIMESTONE	1.83	12.2		
Well ID: 7175301 Construction Date: 2012-01-19	Easting: 7 Northing:	17692 4925393	UTM Zone Positional	17 Accuracy:	margin of error :	30 m - 100 m
		11.0	Water Kin	4	EDECU	Pump Rate (IPM): 27
	Well Diam Well Diam Water Firs Static Leve	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3	Final Statu Primary W	u ıs /ater Use:	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Well Depti Well Diam Water Firs Static Leve Layer: D	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description:	Final Statu Primary W Top:	u is /ater Use: Bottom: 5 49	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY	Final Statu Primary W Top: 0	ater Use: Bottom: 5.49	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Well Depti Well Diam Water Firs Static Leve Layer: D 1 1	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY CLAY	Final Statu Primary W Top: 0 0	u Is /ater Use: Bottom: 5.49 5.49	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1 1 2	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY CLAY CLAY	Final Statu Primary W Top: 0 0 5.49	a Iss /ater Use: 5.49 5.49 6.40	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1 1 2 2 2	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY CLAY CLAY CLAY	Final Statu Primary W Top: 0 0 5.49 5.49	a Iss /ater Use: 5.49 5.49 6.40 6.40	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1 1 2 2 2 3	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE	Final Statu Primary W Top: 0 0 5.49 5.49 6.40	Bottom: 5.49 5.49 6.40 6.40 11	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1 1 2 2 3 3 3	n: 11.6 eter (cm): 15.9 t Found: 6.40 el: 3 riller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE	Final Statu Primary W Top: 0 0 5.49 5.49 6.40 6.40	a s s /ater Use: 5.49 5.49 6.40 6.40 11 11	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :
	Weil Depti Well Diam Water Firs Static Leve Layer: D 1 1 2 2 3 3 3 4	n: 11.6 eter (cm): 15.9 t Found: 6.40 et: 3 riller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE LIMESTONE	Final Statu Primary W Top: 0 0 5.49 5.49 6.40 6.40 11	Ater Use: 5.49 5.49 6.40 6.40 11 11 11.6	Water Supply Domestic	Recommended Pump Rate: 27 Pumping Duration (h:m): 2 :

Well ID: 7175316 Construction Date: 2012-01-19	Easting: Northin	717947 g: 4924958	UTM Zone Positional	e 17 Accuracy:	margin of error : 3	30 m - 100 m	
	Well De Well Dia Water F Static Le	pth: Imeter (cm): 10.2 Irst Found: Evel: 9	Water Kin Final Statı Primary W	d Js /ater Use:	Abandoned-Ot Domestic	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): :	
	Layer:	Driller's Description:	Тор:	Bottom:			
Well ID: 7202734 Construction Date: 2013-06-07	Easting: Northin	717824 g: 4925264	UTM Zone Positional	e 17 Accuracy:	margin of error : 3	30 m - 100 m	
	Well Depth:15.9Well Diameter (cm):15.9Water First Found:6.1Static Level:2		Water Kind Final Status Primary Water Use:		FRESH Water Supply Domestic	Pump Rate (LPM):36Recommended Pump Rate:27Pumping Duration (h:m):1:0	
	Layer:	Driller's Description:	Тор:	Bottom:			
	1	FILL	0	1.22			
	1	FILL	0	1.22			
	2	SAND	1.22	5.79			
	2	SAND	1.22	5.79			
	3	GRAVEL	5.79	6.1			
	3	GRAVEL	5.79	6.1			
	4	LIMESTONE	6.1	15.9			
	4	LIMESTONE	6.1	15.9			
Well ID: 7246869 Construction Date: 2015-08-24	Easting: 718437 Northing: 4925591		UTM Zone 17 Positional Accuracy: margin of error : 3		margin of error : 3	30 m - 100 m	
	Well De Well Dia Water F Static Le	pth: 8.84 ameter (cm): 5.2 irst Found: evel:	Water Kin Final Statı Primary W	ıd us /ater Use:	Monitoring an Monitoring an	Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):	
	Layer:	Driller's Description:	Тор:	Bottom:			
	1	SAND	0	1.83			
	2	SHALE	1.83	2.74			
	3	LIMESTONE	2.74	8.84			

Hydrogeological Assessment and Sewage System Design– 4488 County Road 29, Douro-Dummer, Ontario Kawartha Utility Services Ltd Cambium Reference: 18842-001 March 8, 2024

Appendix H Water Balance Calculations

Water Balance Calculations 4488 County Road 29, Douro-Dummer, Ontario

	TI	HORNTH	IWAITE-	ТҮРЕ М	ONTHLY	WATER-	BALAN		EL				
mo	dified fro	om Dingi	man 201	5: Box 6	5-8 (pg 2	99) using	ET mod	del of Ha	mon (19	963)			
		In	put Dat	а		Comp	uted Va	alues					
											Surplus	359	mm/yr
Weather Station Location:	Peterbo	rough T	rent U			atitude	44 4	degree			•		
	l'eterse	i ougir i				attraue.		acgree					
Solar Declination (degree)	-20.6	-12.6	-1 5	10.0	19.0	23.1	21.0	13.4	2.6	-9.0	-18 5	-23.0	
Davi ongth (hr)*	0.1	10.2	11.0	12.0	14.6	15.2	14.0	12.0	12.0	10.9	10.5	0 7	
	9.1	10.5	11.0	15.5	14.0	13.5	14.9	15.0	12.5	10.8	9.5	0.7	
Available Water St	torage C	anacity	0.14	m/m	Por	t Donth	460	mm	S		64.4	mm	
	loi age C	арасну	0.14		NUC	n Deptii	400		3	UILIIIAX	04.4	111111	
			MON	тні v м	ATER B		ΔΤΔ						
		Ten	nperatu	res in C.	water-b	alance te	erms in I	mm.					
Month:	J	F	M	A	M	J	J	Α	S	0	N	D	Year
	======					======	======	======	======		======		======
TEMPERATURE (T)	-8.4	-6.5	-1.3	6.3	12.8	18.0	20.7	19.4	15.0	8.4	2.4	-4.0	
PRECIPITATION (P)	57.3	48.8	56.5	66.4	88.7	83.0	73.6	87.0	92.4	77.0	85.5	66.0	882
RAIN	22.4	23.1	34.0	60.9	88.7	83.0	73.6	87.0	92.4	75.7	73.3	35.0	749
snow	35	26	23	6	0	0	0	0	0	1	12	31	133
MELT FACTOR (F)	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.40	0.00	
РАСК	73	99	121	0	0	0	0	0	0	0	7	38	
MELT	0	0	0	127	0	0	0	0	0	1	5	0	133
INPLIT (W)	22	23	34	188	89	83	74	87	92	77	78	35	882
ΡΟΤΕΝΤΙΔΙ ΕΤ (ΡΕΤ)			0	41	70	97	115	98	65	39	22	0	548
NET INPLIT (NW)	22	23	34	147	19	-14	-41	-11	27	38	56	35	540
	61	64	64	 	64	52	27	22	50	50 64	50 64	64	
	04	04	04	04	04	12	27	25	50 27	15	04	04	0
	0	0	0	11	70	-13	-25	-4	27	20	0 22	0	522
	22	22	24	41 1/17	10	90	90	91	03	23	56	25	250
50KF205-W-21-D5012	22	23	54	147	19	0	0	0	0	23		35	333
Notes:													
Precipitation, Rain, Temperature, and I	_atitude ar	e inputted	paramete	ers									
SOILmax = available water storage cap	acity * roc	ot depth											
$m = month$ $D = Day length (brs) = 2*cos^{-1}(-tan(l atit))$	ude)*tan([Declination))/0 2618	[calculati	on is in rac	lians]							
SNOW = P - BAIN			1777 0.2010	learenari									
$F_m = 0$ if $T_m <= 0^{\circ}C$; $F_m = 0.167*T_m$ if $0^{\circ}C <$	<t_<6°c; f<="" td=""><td> = 1 if T></td><td>≥=6°C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t_<6°c;>	= 1 if T>	≥=6°C										
$PACK_m = (1-F_m)^*(SNOW_m + PACK_{m-1})$													
MELT = F _m *(SNOW _m +PACK _{m-1})													
W _m = RAIN _m +MELT _m .													
PET = 0 if T _m <0; otherwise PET = 2.98*0).611*exp(17.3*T _m /(⁻	Γ _m +237))/(T _m +237.2	*Number	of days in r	nonth [Ha	amon ET m	odel (196	3)]			
$\Delta W_m = W_m - PET_m$													
SOIL = min{ $[\Delta W_m + SOIL_{m-1}]$, SOILmax}, if	f ∆Wm>0;	otherwise	SOIL = SO	IL _{m-1} * exp	(ΔW/SOILr	nax)							
$\Delta SOIL = SOIL_{m-1} - SOIL_{m}$	ACO!!												
EI = PEI If W _m > PET; otherwise, ET=W	_m -ΔSOIL												

Pre- and Post-Development Water Balance Calculations 4488 County Road 29, Douro-Dummer, Ontario

1 Climate Information

	Precipitation Actual Evapotranspiration Water Surplus	882 523 359	2 mm/yr 8 mm/yr 9 mm/yr
2	Infiltration Rates		
	Table 2 Approach - Infiltration factors	0.45	
	Topography: Rolling to Hilly	0.15	
	Soli Type: Sandy Silt	0.3	i
	Cover: Cultivated land	0.1	
	Total Infiltration Factor	0.55	5
	Infiltration (Water Surplus * Infiltration Factor)	197	′ mm/yr
	Run-off (Water Surplus - Infiltration)	162	2 mm/yr
	Table 3 Approach - Typical Recharge Rates		
	Coarse Sand and Gravel	>250	mm/yr
	Fine to medium sand	200-250	mm/yr
	Silty sand to sandy silt	150-200	mm/yr
	Silt	125-150	mm/yr
	Clayey Silt	100-125	mm/yr
	Clay	<100	mm/yr
	Site development area is underlain predominantly by sand	y silt	
	Based on the above, the recharge rate is typically	150-200	mm/yr
3	Pre-Development Property Statistics	ha	m²
	Total Paved Area	0.00	0
	Total Roof Area	0.00	0
	Total Landscape Area	5.32	53,230
	Total	5.32	53,230
4	Post-Development Property Statistics	ha	m²
	Total Paved Area	0.41	4,971
	Total Roof Area	0.28	1,652
	Total Landscape Area	0.31	46,607
	Total	1.01	53,230

Pre- and Post-Development Water Balance Calculations 4488 County Road 29, Douro-Dummer, Ontario

5 Pre-Development Water Balance

Land Use		Area (m²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-off (m³)
Imporvious Aroos	Paved Area	-	-	-	-	-
Impervious Areas	Roof Area	-	-	-	-	-
Pervious Areas	Landscape Area	53,230	46,949	27,839	10,510	8,599
	Totals	53,230	46,949	27,839	10,510	8,599
A second second second second second			and the state of the last second s			

Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.

6 Post-Development Water Balance

Land Use		Area (m²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-off (m³)
Imporvious Aroos	Paved Area	4,971	4,384	438	-	3,946
Impervious Areas	Roof Area	1,652	1,457	146	-	1,311
Pervious Areas	Landscape Area	46,607	41,107	24,375	9,203	7,529
	Totals	53,230	46,949	24,960	9,203	12,787

Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.

7 Comparision of Pre- and Post -Development

	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-off (m³)
Pre-Development	46,949	27,839	10,510	8,599
Post-Development	46,949	24,960	9,203	12,787
Change in Volume	-	- 2,880	- 1,308	4,187
Change in %	-	- 10	- 12	49

8 Requirement for Infiltration of Roof Run-off

Volume of Pre-Development Infiltration (m ³ /yr)	10,510
Volume of Post-Development Infiltration (m ³ /yr)	9,203
Deficit from Pre to Post Development Infiltration (m ³ /yr)	1,308
Percentage of Roof Runoff required to match the pre-development infiltration (%)	100

Hydrogeological Assessment and Sewage System Design– 4488 County Road 29, Douro-Dummer, Ontario Kawartha Utility Services Ltd Cambium Reference: 18842-001 March 8, 2024

Appendix I Sewage System Permit Application

The Township of Douro-Dummer 894 South St., PO Box 92 Warsaw, ON K0L 3A0 Phone: 705-652-8392

Application Guide for Sewage System (Septic) Permits

Checklist for complete permit application:

Complete Application on Cloud Permit
Building Permit Application Form (if uploading to Cloud Permit)
Schedule 1 (Designer Information)
Schedule 2 (Sewage System Installer)
Authorization to Act as Agent Form (if applicable)
Detailed Siteplan/Lot Layout
Test pit dug to minimum 1.5m depth (call Leisha to schedule)
Applicable Permit Fee

This application guide is intended to be used for Class 2 (Greywater System), Class 3 (Cesspool), Class 4 (Leaching Bed System), or Class 5 (Holding Tank) applications.

Ensure that you follow the steps that will guide you through the design process for the system and return the entire application guide with the required documentation listed above. If you have any questions, contact staff at the Township office:

Leisha Newton Building Administrator 705-652-8392 x 211 leishan@dourodummer.on.ca Don Helleman Temporary Chief Building Official 705-652-8392 x 216 dhelleman@dourodummer.on.ca

Step 1: Fill in Highlighted areas

Test Pit Excavation date: October 23, 2023

	Applicant Use	Inspector Use		
Depth (m)	Soil Type	"T" Time	Soil Type	"T" Time
0-0.3	Topsoil	N/A		
0.3 – 0.6	Sandy silt, some clay, trace gravel	30		
0.6 – 0.9	Sandy silt, some clay, trace gravel	30		
0.9 – 1.2	Gravelly sand, trace silt, trace clay	20		
1.2 – 1.5	Gravelly sand, trace silt, trace clay	20		
1.5 +				

Reference chart for common soil types:

Soil Type (Unified Soil Classification) Coarse Grained with more than 50% larger than #200	Percolation Time, T – mins/cm	Comment
GM – Silty gravels, gravel-sand-silt mixtures	4 – 12	Permeable depending on amount of silt
GC – Clayey gravels, gravel-sand-clay mixtures	12 – 50	T time depends on clay content
SM – Silty sands, sand-silt mixtures	8 – 20	Medium to low permeability
SC – Clayey sands, sand-clay mixtures	12 – 50	Medium to low permeability depending on clay content

Sewage System Design Height:

1.5m - Ground Water Table or bedrock depth = 0 (Minimum raised height of bed)

Water Supply:

- Drilled Well (with 6m casing depth min.)
- Dug Well
- Other:

Test Pit Inspection Report

Date of Inspection:	Inspector:
Weather:	Percolation Test Required:
Design T:	Grain Size Analysis Required:
Depth to bedrock:	
Depth to GWT:	

Fixture	Total Count	Units Per	Fixture Units	
Bathtub		1.5	=	
Shower (1 Head)		1.5	=	
Shower (2-3 Heads)		3	=	
Lavatory		1.5	=	
Water Closet		4	=	
Bathroom Group (see note)		6	=	
Kitchen Sink		1.5	=	
Garburator (see note)			=	
Other Sinks		1.5	=	
Dishwasher (see note)		1	=	
Floor Drain (see note)		2	=	
Clothes Washer		1.5	=	
Other			=	
		Total:	N/A	

Step 2: Fill in Highlighted Areas

Notes:

Bathroom Group: A group consisting of exactly one shower (1 head), one lavatory, and one flush tank water closet. This would usually add up to 7, but a reduction is provided.

Garburator: A domestic style garbage disposal is permitted with no additional fixture load. Commercial style is a fixture load of 3.

Dishwasher: Only include dishwashers that are not connected to the domestic sink.

Floor Drain: This only includes floor drains which connect to the sanitary sewage system.

Step 3: Fill in Highlighted Areas

Existing Bedrooms:	-
New Bedrooms:	-
Total Bedrooms:	-

Note: Include Sleeping Cabins

Existing Area (m ²):	-
Proposed Area (m ²):	-
Total Area (m ²):	-

Note: Exclude basement area

Step 4a: Calculate Total Daily Design Flow for Dwellings

Dwellings:	Volume
1 bedroom dwelling	750 L
2 bedroom dwelling	1100 L
3 bedroom dwelling	1600 L
4 bedroom dwelling	2000 L
5 bedroom dwelling	2500 L

Additional Flow for:	Volume
i) Each bedroom over 5	500 L
ii) a) each 10m ² (or part of it) over 200m ² up to 400m ²	100 L
b) each 10m ² (or part of it) over 400m ² up to 600m ²	75 L
c) each 10m ² (or part of it) over 600m ²	
iii) each fixture unit over 20 fixture units	

Base (# of Bedrooms):

Additional Flow: _____L

Total Daily Flow (Q): _____L

Step 4b: Calculate Total Daily Design Flow for Non-Dwellings

Occupancy Type: Maintenance Shop - OBC Table 8.2.1.3.b (Factory)

Loading Criteria: 75 L/person * 53 staff

Total Daily Flow (Q): <u>3,975 L/day</u>

Step 5: Calculate Tank Size (Class 4 System)

Dwellings: Total Daily Flow (Q) x 2 = _____L

Non-Dwellings: Total Daily Flow (Q) x 3 = 11,925

Note: Minimum tank size 3600L

Proposed Tank Size: <u>12,000</u>

Step 6: Calculate Filter Bed Size

If Q is 3000L or less:

Q / 75 = _____m²

If Q is more than 3000 L:

 $Q / 50 = (79.5 \text{ m}^2 / 2 \text{ beds}) = 39.75 \text{ m}^2 \text{ per bed}$

If Treatment Unit is proposed:

Q / ____ = ____m²

Extended Contact Area:

 $Q \times T / 850 = 140.2 m^2$

Step 7: Acknowledgement of Overhead Conductors

As per 3.1.19.1. of the Ontario Building Code,

3.1.19.1 Clearances to Buildings (A sewage system is defined as a building)

(1) A *building* shall not be located beneath existing above ground electrical conductors.

(2) The horizontal clearance measured from the maximum conductor swing to the *building*, including balconies, fire escapes, flat roofs or other accessible projections beyond the face of the *building*, shall,

- (a) be not less than 1 m, for electrical conductors carrying voltages 750 V or less, except where necessary to connect to the electrical wiring of the *building*,
- (b) be not less than 3 m, for electrical conductors carrying voltages greater than 750 V but not exceeding 46 kV,
- (c) be not less than 3.7 m, for electrical conductors carrying voltages greater than 46 kV but not exceeding 69 kV, or
- (d) conform to the requirements of CAN/CSA-C22.3 No.1, "Overhead Systems", for electrical conductors carrying voltages greater than 69 kV.

Signature of Applicant:	Date:	
U 11		

Application for a Permit to Construct or Demolish This form is authorized under subsection 8(1.1) of the *Building Code Act*, 1992

For use by Principal Authority							
Application number:	Permit number (if different):			number (if different):			
Date received:		Ro	oll nun	nber:			
	DOL	JRO-I	DU	MMER			
Application submitted to:(Name of municipali	ty, upper-ti	er municipal	lity, bo	ard of health or conserva	tion authority)		
A Project information		· · ·			• /		
A. Project information Building number, street name					Linit number	Lot/con	
Building humber, street hame					Onit number	Lot/con.	
Municipality	Postal	rode		Plan number/other d	escription		
Wurneipanty	rostart	Jule			escription		
Project value est. \$				Area of work (m ²)			
B. Purpose of application							
New construction	to an ilding	Alte	eratio	n/repair	Demolition	Conditional Permit	
Proposed use of building		Current u	use of	building			
Description of proposed work							
C. Applicant Applicant is:	plicant is: Owner or Authorized agen			ithorized agent of own	er		
Last hame	FIISUNA	me		Corporation of partici-	ership		
Street address					Unit number	Lot/con.	
Municipality	Postal of	code		Province	E-mail		
Telephone number	Fax			Cell number			
D. Owner (if different from applicant)				O and a set is a set of a set of a	h :		
Last name First name							
						1	
Sheet address					Unit number	LOU/CON.	
			Province	F-mail			
- Warneipanty	PUSIAI COUE						
Telephone number	Fax				Cell number		

E. Builder (optional)						
Last name	First name	Corporation or partners	hip (if appli	cable)		
Street address			Unit numt	ber	Lot/con.	
Municipality	Postal code	Province	E-mail			
Telephone number	Fax		Cell number			
F. Tarion Warranty Corporation (Ontario	New Home Warrant	y Program)				
i. Is proposed construction for a new hom <i>Plan Act</i> ? If no, go to section G.	ne as defined in the Onta	rio New Home Warranties	6	Yes		No
ii. Is registration required under the Ontar	io New Home Warranties	s Plan Act?		Yes		No
iii. If yes to (ii) provide registration number	(s):					
G. Required Schedules						
i) Attach Schedule 1 for each individual who rev	views and takes responsi	bility for design activities.				
ii) Attach Schedule 2 where application is to con	struct on-site, install or re	epair a sewage system.				
H. Completeness and compliance with a	applicable law		I			
 i) This application meets all the requirements o Building Code (the application is made in the applicable fields have been completed on the schedules are submitted). 	f clauses 1.3.1.3 (5) (a) t correct form and by the application and required	o (d) of Division C of the owner or authorized agen I schedules, and all requir	t, all red	Yes		No
Payment has been made of all fees that are required, under the applicable by-law, resolution or regulation made under clause 7(1)(c) of the <i>Building Code Act, 1992</i> , to be paid when the application is made.					No	
ii) This application is accompanied by the plans and specifications prescribed by the applicable by-law, resolution or regulation made under clause 7(1)(b) of the <i>Building Code Act, 1992.</i>						No
iii) This application is accompanied by the information and documents prescribed by the applicable by- law, resolution or regulation made under clause 7(1)(b) of the <i>Building Code Act, 1992</i> which enable the chief building official to determine whether the proposed building, construction or demolition will contravene any applicable law.					No	
iv) The proposed building, construction or demo	ition will not contravene	any applicable law.		Yes		No
I. Declaration of applicant						
				doo	lara that:	
(print name)				uec	iale illai.	
 The information contained in this applic documentation is true to the best of my If the owner is a corporation or partners 	ation, attached schedule knowledge. hip, I have the authority t	s, attached plans and spe to bind the corporation or	ecifications, partnership	, and othe	er attached	d
Date	Signature of a	applicant			_	

Personal information contained in this form and schedules is collected under the authority of subsection 8(1.1) of the *Building Code Act, 1992*, and will be used in the administration and enforcement of the *Building Code Act, 1992*. Questions about the collection of personal information may be addressed to: a) the Chief Building Official of the municipality or upper-tier municipality to which this application is being made, or, b) the inspector having the powers and duties of a chief building official in relation to sewage systems or plumbing for an upper-tier municipality, board of health or conservation authority to whom this application is made, or, c) Director, Building and Development Branch, Ministry of Municipal Affairs and Housing 777 Bay St., 2nd Floor. Toronto, M5G 2E5 (416) 585-6666.
Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information							
Building number, street name 4488 County Road 29			Unit no.	Lot/con.			
Municipality Douro-Dummer	Postal code K0L 2H0	Plan number/ other descrip	otion				
B. Individual who reviews and takes responsibility for design activities							
Name Jeremy Tracey		^{Firm} Cambium Inc.					
Street address 194 Sophia Street			Unit no.	Lot/con.			
Municipality Peterborough	Postal code K9H 1E5	ProvinceON	E-mail jeremy.trace	ey@cambium-inc.com			
Telephone number 705-742-7900	Fax number		Cell number				
C. Design activities undertaken by individual identified in Section B. [Building Code Table 3.5.2.1. of Division Cl							
House Small Buildings Large Buildings Complex Buildings Description of designer's work Sewage s	□ HVAC – House □ Building Structural □ Building Services □ Plumbing – House □ Detection, Lighting and Power □ Plumbing – All Buildings □ Fire Protection ☑ On-site Sewage Systems ^k Sewage system design under Part 8 of the Ontario Building Code						
D. Declaration of Designer							
I							
Firm BCIN:			_				
I review and take responsibility for the design and am qualified in the appropriate category as an "other designer" under subsection 3.2.5.of Division C, of the Building Code. Individual BCIN:							
Basis for exemption from registration:							
The design work is exempt from the registration and qualification requirements of the Building Code. Basis for exemption from registration and qualification: I certify that: 1. The information contained in this schedule is true to the best of my knowledge. 2. I have submitted this application with the knowledge and consent of the firm. February 28, 2024							
Date		Signature of Designer					
NOTE:							

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) (c) of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

2. Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of practice, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

Schedule 2: Sewage System Installer Information

A. Project Information							
Building number, street name			Unit number	Lot/con.			
Municipality	Postal code	Plan number/ other descr	an number/ other description				
B. Sewage system installer							
Is the installer of the sewage system engaged in the business of constructing on-site, installing, repairing, servicing, cleaning or emptying sewage systems, in accordance with Building Code Article 3.3.1.1, Division C?							
Yes (Continue to Section C) No (Continue to Section E)			application (Continue to Section E)				
C. Registered installer information (where answer to B is "Yes")							
Name			BCIN				
Street address			Unit number	Lot/con.			
Municipality	Postal code	Province	E-mail				
Telephone number	Fax		Cell number				
D. Qualified supervisor information (where answer to section B is "Yes")							
Name of qualified supervisor(s) Building Code Identification Number (BCIN)							
E. Declaration of Applicant:							
1				declare that:			
(print name)							
I am the applicant for the permit to construct the sewage system. If the installer is unknown at time of application, I shall submit a new Schedule 2 prior to construction when the installer is known;							
<u>OR</u>							
I am the holder of the permit to construct the sewage system, and am submitting a new Schedule 2, now that the installer is known.							
I certify that:							
1. The information contained in this schedule is true to the best of my knowledge.							
2. If the owner is a corporation or partnership, I have the authority to bind the corporation or partnership.							
Date Signature of applicant							